Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Growth Factors ; 42(1): 13-23, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932893

RESUMEN

Danggui blood-supplementing decoction (DBsD) is an herbal preparation treating several diseases including stroke. The present study sought to investigate the potential mechanism of DBsD in ischaemic stroke (IS) using network pharmacology, molecular docking, and cell experiment. Based on the protein-protein (PPI) network analysis, MAPK1 (0.51, 12), KNG1 (0.57, 28), and TNF (0.64, 39) were found with relatively good performance in degree and closeness centrality. The functional enrichment analysis revealed that DBsD contributed to IS-related biological processes, molecule function, and presynaptic/postsynaptic cellular components. Pathway enrichment indicated that DBsD might protect IS by modulating multi-signalling pathways including the sphingolipid signalling pathway. Molecular docking verified the stigmasterol-KNG1, bifendate-TNF, and formononetin-MAPK1 pairs. Cell experiments confirmed the involvement of KNG1 and sphingolipid signalling pathway in hippocampal neuronal cell apoptosis. This study showed that DBsD can protect neuronal cell injury after IS through multiple components, multiple targets, and multiple pathways.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Farmacología en Red , Simulación del Acoplamiento Molecular , Isquemia Encefálica/tratamiento farmacológico , Esfingolípidos
2.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206681

RESUMEN

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Asunto(s)
Glicopéptidos , Espectrometría de Masas en Tándem , Glicopéptidos/análisis , Espectrometría de Masas en Tándem/métodos , Electrones , Péptidos/química , Polisacáridos/química
3.
Small ; 20(14): e2306825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990356

RESUMEN

Polar photovoltaic effect (PPE) has attracted great attention in regulating desired optoelectronic properties, which can be driven by order-disorder and displacive phase transitions. Bond-switching is also a feasible method to induce PPE, but such investigation is very rare. Lead-halide hybrid perovskite (LHHP) is an outstanding photodetection material; lead atoms possess rich coordination modes to provide possibilities to construct switchable bonds. Here, a unique perovskitizer N─Pb bond-switching is disclosed to induce polar photovoltage in the emerging LHHP, PA2MHy2Pb3Br10 (1, PA = n-propylamine, MHy = methylhydrazine). Interestingly, the perovskitizer MHy+ provides 2s2 lone pair while the Pb atom affords empty d orbitals, which coordinate with each other to generate a flexible N─Pb bond. Further, the introduction of N─Pb bonds results in a high distortion of the PbBr6 octahedron to form local polarity and further orientation to induce spontaneous polarization. More importantly, such a flexible N─Pb bond switching mechanism drives a notable PPE and controllable polarized photo-response, a polarization ratio up to 9.7 at the polar phase in striking contrast with the non-polar phase (1.03). The work provides the first demonstration of bond-switching to induce polar phase transition and polar photovoltage in the photoconductive hybrid perovskites for photoelectric applications.

4.
Small ; : e2401545, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837884

RESUMEN

Polar metal halide hybrid perovskites (PHPs) that exhibit outstanding bulk photovoltaic effect (BPVE), excellent semiconductor features, and strong radiation absorption ability, have shown prominent advantages in highly sensitive direct X-ray detection. However, it is still a challenge to explore PHPs with high BPVE temperature ranges, answering the demand of developing thermally stable passive X-ray detection. Herein, by intercalating arylamine into lead tribromide and inducing order-disorder phase transition, a 2D multilayered PHPs (BZA)2(MA)Pb2Br7 (BZPB, BZA = benzylamine, MA = methylamine) is synthesized. BZPB crystallizes in a polar space group Aea2 at a low-temperature phase and demonstrates a significant open-circuit of 0.3 V deriving from BPVE under X-ray irradiation. Meanwhile, the strong X-ray absorption coefficient and outstanding carrier transport capability of the bilayered lead halide framework associated with the polar BPVE give BZPB excellent X-ray detection abilities. At 0 V bias, the impressive sensitivity of BZPB is 98 µC Gy-1 cm-2. Importantly, the introduction of the rigid BZA ring increases the energy barrier of phase transition and thus dramatically enhances the X-ray detection operating temperature of BZPB up to 409 K without significant performance degradation. This work strongly reveals the great potential of rational design of metal halide hybrid perovskites for X-ray detection applications.

5.
Small ; 20(2): e2305327, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670556

RESUMEN

Low-cost fabric-based top-emitting polymer light-emitting devices (Fa-TPLEDs) have aroused increasing attention due to their remarkable potential applications in wearable displays. However, it is still challenging to realize efficient all-solution-processed devices from bottom electrodes to top electrodes with large-scale fabrication. Here, a smooth reflective Ag cathode integrated on fabric by one-step silver mirror reaction and a composite transparent anode of polydimethylsiloxane/silver nanowires/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) via a water-assisted peeling method are presented, both of which possess excellent optoelectrical properties and robust mechanical flexibility. The Fa-TPLEDs are constructed by spin-coating functional layers on the bottom reflective cathodes and laminating the top transparent anodes. The Fa-TPLEDs show a current efficiency of 16.3 cd A-1 , an external quantum efficiency of 4.9% and angle-independent electroluminescence spectra. In addition, the Fa-TPLEDs possess excellent mechanical stability, maintaining a current efficiency of 14.3 cd A-1 after 200 bending cycles at a radius of 4 mm. The results demonstrate that the integration of solution-processed reflective cathodes and transparent anodes sheds light on a new avenue to construct low-cost and efficient fabric-based devices, showing great potential applications in emerging smart flexible/wearable electronics.

6.
J Integr Plant Biol ; 66(4): 660-682, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37968901

RESUMEN

Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.


Asunto(s)
Oryza , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/metabolismo , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Frío
7.
Angew Chem Int Ed Engl ; 63(11): e202320180, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38196036

RESUMEN

Three-dimensional (3D) organic-inorganic hybrid perovskites (OIHPs) have achieved tremendous success in direct X-ray detection due to their high absorption coefficient and excellent carrier transport. However, owing to the centrosymmetry of classic 3D structures, these reported X-ray detectors mostly require external electrical fields to run, resulting in bulky overall circuitry, high energy consumption, and operational instability. Herein, we first report the unprecedented radiation photovoltage in 3D OIHP for efficient self-driven X-ray detection. Specifically, the 3D polar OIHP MhyPbBr3 (1, Mhy=methylhydrazine) shows an intrinsic radiation photovoltage (0.47 V) and large mobility-lifetime product (1.1×10-3  cm2 V-1 ) under X-ray irradiation. Strikingly, these excellent physical characteristics endow 1 with sensitive self-driven X-ray detection performance, showing a considerable sensitivity of 220 µC Gy-1 cm-2 , which surpasses those of most self-driven X-ray detectors. This work first explores highly sensitive self-driven X-ray detection in 3D polar OIHPs, shedding light on future practical applications.

8.
Plant J ; 112(1): 151-171, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35942609

RESUMEN

Chromium (Cr) pollution threatens plant development and growth. Application of melatonin (Mel) is emerging as an effective ally to resist stress, but how Mel ameliorates seed germination upon exposure to heavy metals is poorly understood. Here, we found (i) that seed priming with Mel considerably alleviated Cr stress during rice (Oryza sativa) seed germination and (ii) that germination performance was significantly improved in suppressor of the G2 allele of skp1 (OsSGT1) overexpression lines, while mutations of OsSGT1 and/or abscisic acid-insensitive 5 (OsABI5) noticeably abrogated such Mel-induced tolerance to Cr. Complementation assays suggested that the restored expression of OsSGT1 could not rescue the weak germination of sgt1-1abi5 under Cr stress, even upon Mel priming, but the expression of OsABI5 driven by the promoter of OsSGT1 significantly restored the Mel-ameliorated germination and the expression of ascorbate peroxidase 1 (OsAPX1) in sgt1-1abi5. Further analysis indicated that OsABI5 directly regulated the transcriptional expression of OsAPX1, whose encoding products promoted H2 O2 scavenging to maintain redox homeostasis, which is essential for germination. Collectively, this work demonstrates that OsSGT1 regulates OsABI5 to target OsAPX1, mediating the stimulatory effects of Mel on germination of Cr-stressed seeds, which provides a guide for the application of Mel in rice production.


Asunto(s)
Melatonina , Oryza , Ácido Abscísico/metabolismo , Ascorbato Peroxidasas , Cromo , Germinación , Melatonina/farmacología , Semillas/fisiología
9.
J Am Chem Soc ; 145(46): 25134-25142, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37956441

RESUMEN

Chiral hybrid perovskites combine the advantages of chiral materials and halide perovskites, offering an ideal platform for the design of circularly polarized light (CPL) detectors. The pyro-phototronic effect, as a special mechanism of the photoexcited pyroelectric signal, can significantly improve the performance of photodetectors, whereas it remains a great challenge to achieve pyroelectricity-based CPL detection. In this work, the chiroptical phenomena and the pyro-phototronic effect are combined in chiral-polar perovskites to achieve unprecedented pyroelectric-based CPL detection. Two novel two-dimensional (2D) lead-free chiral-polar double perovskites, S/R-[(4-aminophenyl)ethylamine]2AgBiI8·0.5H2O, are successfully designed and synthesized by introducing chiral organic ligands into metal halide frameworks. Strikingly, the photoresponse is substantially boosted with the support of the pyro-phototronic effect, showing an increased pyro-phototronic current that is 40 times greater than the photovoltaic current. Furthermore, the pyroelectric-based detector possesses excellent CPL detection capacity to distinguish different polarization states of CPL photons, which achieve an impressive glph of up to 0.27 at zero bias. This study provides a brand new process for CPL detection by utilizing the pyro-phototronic effect in chiral-polar perovskites, which opens a new avenue for chiral materials in optoelectronic applications.

10.
Small ; 19(33): e2302443, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37156749

RESUMEN

Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.

11.
Bioinformatics ; 38(9): 2587-2594, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35188177

RESUMEN

MOTIVATION: Cancer survival prediction can greatly assist clinicians in planning patient treatments and improving their life quality. Recent evidence suggests the fusion of multimodal data, such as genomic data and pathological images, is crucial for understanding cancer heterogeneity and enhancing survival prediction. As a powerful multimodal fusion technique, Kronecker product has shown its superiority in predicting survival. However, this technique introduces a large number of parameters that may lead to high computational cost and a risk of overfitting, thus limiting its applicability and improvement in performance. Another limitation of existing approaches using Kronecker product is that they only mine relations for one single time to learn multimodal representation and therefore face significant challenges in deeply mining rich information from multimodal data for accurate survival prediction. RESULTS: To address the above limitations, we present a novel hierarchical multimodal fusion approach named HFBSurv by employing factorized bilinear model to fuse genomic and image features step by step. Specifically, with a multiple fusion strategy HFBSurv decomposes the fusion problem into different levels and each of them integrates and passes information progressively from the low level to the high level, thus leading to the more specialized fusion procedure and expressive multimodal representation. In this hierarchical framework, both modality-specific and cross-modality attentional factorized bilinear modules are designed to not only capture and quantify complex relations from multimodal data, but also dramatically reduce computational complexity. Extensive experiments demonstrate that our method performs an effective hierarchical fusion of multimodal data and achieves consistently better performance than other methods for survival prediction. AVAILABILITY AND IMPLEMENTATION: HFBSurv is freely available at https://github.com/Liruiqing-ustc/HFBSurv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Genómica , Genoma , Fusión Génica
12.
Angew Chem Int Ed Engl ; 62(45): e202308445, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37574445

RESUMEN

Bulk photovoltaic effect, a promising optoelectronic phenomenon for generating polarized dependent steady-state photocurrent, has been widely applied in various photodetectors. However, incorporating stereochemically active lone pair to construct bulk photovoltage in organic-inorganic hybrid perovskite (OIHP) is still elusive and challenging. Herein, bulk photovoltage (1.2 V) has been successfully achieved by introducing the stereo-chemically active lone pair perovskitizer to construct a polar tri-layered hybrid perovskite, namely, (IBA)2 MHy2 Pb3 Br10 (1, IBA=iso-butylamine, MHy=methylhydrazine). Strikingly, owning to the promising bulk photovoltage, 1-based detectors exhibit an ultra-highly sensitive polarized photodetection (polarization ratio of up to 24.6) under self-powered mode. This ratio surpasses all the reported two-dimension OIHP single-crystal photodetectors. In addition, detectors exhibit outstanding responsivity (≈200 mA W-1 ) and detectivity (≈2.4×1013 Jones). More excitingly, further investigation confirms that lone pair electrons in MHy+ result in the separation of positive and negative charges to produce directional dipoles, which further directional alignment to generate bulk photovoltage, thereby resulting in polarization-dependent photocurrent. Our findings provide a new demonstration for polar multilayer materials' construction and may open opportunities for a host of high-sensitive polarized photodetection.

13.
Angew Chem Int Ed Engl ; 62(44): e202309737, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37665693

RESUMEN

Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal-organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2 ) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.

14.
Breast Cancer Res Treat ; 192(2): 353-368, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35084622

RESUMEN

INTRODUCTION: Breast cancer metastasis is the main cause of cancer-related death in women worldwide. Current therapies have remarkably improved the prognosis of breast cancer patients but still fail to manage metastatic breast cancer. Here, the present study was set to explore the role of microRNA (miR)-660 from tumor-associated macrophages (TAMs) in breast cancer, particularly in metastasis. MATERIALS AND METHODS: We collected breast cancer tissues and isolated their polarized macrophages as well as extracellular vesicles (EVs), in which we measured the expression of miR-660, Kelch-like Protein 21 (KLHL21), and nuclear factor-κB (NF-κB) p65. Breast cancer cells were transfected with miR-660 mimic, miR-660 inhibitor, and sh-KLHL21 and then the cells were co-cultured with EVs or TAMs followed by detection of invasion and migration. Finally, mouse model of breast cancer was established to detect the effect of miR-660 or KLHL21 on metastasis by measuring the lymph node metastasis (LNM) foci in femur and lung. RESULTS: KLHL21 was poorly expressed, whereas miR-660 was highly expressed in breast cancer tissues and cells. Of note, low KLHL21 expression or high miR-660 expression was related to poor overall survival. EVs-contained miR-660 was identified to bind to KLHL21, reducing the binding between KLHL21 and inhibitor kappa B kinase ß (IKKß) to activate the NF-κB p65 signaling pathway. Interestingly, EV-loaded miR-660 from TAMs could be internalized by breast cancer cells. Moreover, silencing of KLHL21 increased the number of lung LNM foci in vivo, while EVs-contained miR-660 promoted cancerous cell invasion and migration. DISCUSSION: Taken altogether, our work shows that TAMs-EVs-shuttled miR-660 promotes breast cancer progression through KLHL21-mediated IKKß/NF-κB p65 axis.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Animales , Neoplasias de la Mama/patología , Vesículas Extracelulares/genética , Femenino , Humanos , Macrófagos/patología , Ratones , MicroARNs/genética , FN-kappa B/genética , FN-kappa B/metabolismo
15.
Bioinformatics ; 37(18): 2963-2970, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33734318

RESUMEN

MOTIVATION: Breast cancer is a very heterogeneous disease and there is an urgent need to design computational methods that can accurately predict the prognosis of breast cancer for appropriate therapeutic regime. Recently, deep learning-based methods have achieved great success in prognosis prediction, but many of them directly combine features from different modalities that may ignore the complex inter-modality relations. In addition, existing deep learning-based methods do not take intra-modality relations into consideration that are also beneficial to prognosis prediction. Therefore, it is of great importance to develop a deep learning-based method that can take advantage of the complementary information between intra-modality and inter-modality by integrating data from different modalities for more accurate prognosis prediction of breast cancer. RESULTS: We present a novel unified framework named genomic and pathological deep bilinear network (GPDBN) for prognosis prediction of breast cancer by effectively integrating both genomic data and pathological images. In GPDBN, an inter-modality bilinear feature encoding module is proposed to model complex inter-modality relations for fully exploiting intrinsic relationship of the features across different modalities. Meanwhile, intra-modality relations that are also beneficial to prognosis prediction, are captured by two intra-modality bilinear feature encoding modules. Moreover, to take advantage of the complementary information between inter-modality and intra-modality relations, GPDBN further combines the inter- and intra-modality bilinear features by using a multi-layer deep neural network for final prognosis prediction. Comprehensive experiment results demonstrate that the proposed GPDBN significantly improves the performance of breast cancer prognosis prediction and compares favorably with existing methods. AVAILABILITYAND IMPLEMENTATION: GPDBN is freely available at https://github.com/isfj/GPDBN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Genómica , Redes Neurales de la Computación , Genoma
16.
Theor Appl Genet ; 135(8): 2817-2831, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779128

RESUMEN

KEY MESSAGE: An alanine to valine mutation of glutamyl-tRNA reductase's 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTRA510V mutation increases its substrate binding. We then demonstrate that the OsGluTRA510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTRA510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Alanina/genética , Alanina/metabolismo , Aldehído Oxidorreductasas , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Simulación del Acoplamiento Molecular , Mutación , Oryza/genética , Oryza/metabolismo , Valina/genética , Valina/metabolismo
17.
Int Microbiol ; 25(2): 325-338, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34746983

RESUMEN

Blakeslea trispora has great potential uses in industrial production because of the excellent capability of producing a large quantity of carotenoids. However, the mechanisms of light-induced carotenoid biosynthesis even the structural and regulatory genes in pathways remain unclear. In this paper, we reported the first transcriptome study in B. trispora in which we have carried out global survey of expression changes of genes participated in blue light response. We verified that the yield of ß-carotene increased 3-fold when transferred from darkness to blue light for 24 h and the enhancement of transcription levels of carRA and carB presented a positive correlation with the increase in carotenoid production. RNA-seq analysis revealed that 1124 genes were upregulated and 740 genes were downregulated respectively after blue light exposure. Annotation through GO, KEGG, Swissprot, and COG databases showed 11119 unigenes compared well with known gene sequences, 5514 unigenes were classified into Gene Ontology, and 4675 unigenes were involved in distinct pathways. Among the blue light-responsive genes, 4 genes (carG1, carG3, carRA and carB) identified to function in carotenoid metabolic pathways were dominantly upregulated. We also discovered that 142 TF genes belonging to 45 different superfamilies showed significant differential expression (p≤ 0.05), 62 of which were obviously repressed by blue light. The detailed profile of transcription data will not only allow us to conduct further functional genomics study in B. trispora, but also enhance our understanding of potential metabolic pathway and regulatory network involved in light-regulated carotenoid synthesis.


Asunto(s)
Mucorales , Transcriptoma , Carotenoides/metabolismo , Mucorales/genética , beta Caroteno/metabolismo
18.
Nanotechnology ; 33(45)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976804

RESUMEN

Coal-based graphene sheets (GS) and coal-based graphene quantum dots (GQDs) are usually prepared separately. In this paper, symbiosis of coal-based GS and coal-based GQDs was successfully prepared with our proposed preparation method by using three raw coals with different reflectance (collected from Qinshui coalfield, Shanxi Province) as carbon sources. The results showed that coal-based GS and coal-based GQDs can exist stably in the symbiosis and are distributed in different layers, and the GQDs are freely distributed between layers of GS. The average number of GS (Nave) in the three symbiosis is about 7 and the average interlayer spacing (d002) is about 0.3887 nm. The average diameter of GQDs in the three symbiosis is about 4.255 nm and the averaged002is about 0.230 nm. The averageNaveof the three symbiosis was about 3 and the averaged002is about 0.361 nm. The morphology and crystal parameters of symbiosis is more similar to that of graphene, the elements are only carbon and oxygen. In the prepared symbiosis, the higher the reflectance of raw coal, the smoother the lattice skeleton and the less vortex-layer structure of GS, and the larger the diameter and the denser the six membered ring of GQDs. The C and O functional groups of the prepared symbionts are similar. The higher the reflectance of coal, the higher the content of C-C/C=C. Under ultraviolet light, the prepared products all emit blue, and the higher the reflectance of coal, the higher the ultraviolet absorption, and the stronger the fluorescence intensity.

19.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054782

RESUMEN

Drought has become one of the environmental threats to agriculture and food security. Applications of melatonin (MT) serve as an effective way to alleviate drought stress, but the underlying mechanism remains poorly understood. Here, we found that foliar spray of 100-µM MT greatly mitigated the severe drought stress-induced damages in rice seedlings, including improved survival rates, enhanced antioxidant system, and adjusted osmotic balance. However, mutation of the suppressor of the G2 allele of skp1 (OsSGT1) and ABSCISIC ACID INSENSITIVE 5 (OsABI5) abolished the effects of MT. Furthermore, the upregulated expression of OsABI5 was detected in wild type (WT) under drought stress, irrespective of MT treatment, whereas OsABI5 was significantly downregulated in sgt1 and sgt1abi5 mutants. In contrast, no change of the OsSGT1 expression level was detected in abi5. Moreover, mutation of OsSGT1 and OsABI5 significantly suppressed the expression of genes associated with the antioxidant system. These results suggested that the functions of OsSGT1 in the MT-mediated alleviation of drought stress were associated with the ABI5-mediated signals. Collectively, we demonstrated that OsSGT1 was involved in the drought response of rice and that melatonin promoted SGT1-involved signals to ameliorate drought stress adaption.


Asunto(s)
Adaptación Fisiológica , Sequías , Melatonina/farmacología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/farmacología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Plantones , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
20.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684483

RESUMEN

Resveratrol is a polyphenolic compound with anti-oxidation effects. The mechanisms underlying the antioxidant effects of resveratrol in duck intestinal epithelial cells remain unclear. The protective effects of resveratrol against oxidative stress induced by H2O2 on immortalized duck intestinal epithelial cells (IDECs) were investigated. IDECs were established by transferring the lentivirus-mediated simian virus 40 large T (SV40T) gene into small intestinal epithelial cells derived from duck embryos. IDECs were morphologically indistinguishable from the primary intestinal epithelial cells. The marker protein cytokeratin 18 (CK18) was also detected in the cultured cells. We found that resveratrol significantly increased the cell viability and activity of catalase and decreased the level of intracellular reactive oxygen species and malondialdehyde, as well as the apoptosis rate induced by H2O2 (p < 0.05). Resveratrol up-regulated the expression of NRF2, p-NRF2, p-AKT, and p-P38 proteins and decreased the levels of cleaved caspase-3 and cleaved caspase-9 and the ratio of Bax to Bcl-2 in H2O2-induced IDECs (p < 0.05). Our findings revealed that resveratrol might alleviate oxidative stress by the PI3K/AKT and P38 MAPK signal pathways and inhibit apoptosis by altering the levels of cleaved caspase-3, cleaved caspase-9, Bax, and Bcl-2 in IDECs exposed to H2O2.


Asunto(s)
Patos , Peróxido de Hidrógeno , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Patos/metabolismo , Células Epiteliales , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA