Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nano Lett ; 24(4): 1246-1253, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38198620

RESUMEN

Two-dimensional (2D) ferromagnets have attracted widespread attention for promising applications in compact spintronic devices. However, the controlled synthesis of high-quality, large-sized, and ultrathin 2D magnets via facile, economical method remains challenging. Herein, we develop a hydrogen-tailored chemical vapor deposition approach to fabricating 2D Cr5Te8 ferromagnetic nanosheets. Interestingly, the time period of introducing hydrogen was found to be crucial for controlling the lateral size, and a Cr5Te8 single-crystalline nanosheet of lateral size up to ∼360 µm with single-unit-cell thickness has been obtained. These samples exhibit a leading role of domain wall nucleation in governing the magnetization reversal process, providing important references for optimizing the performances of associated devices. The nanosheets also show notable magnetotransport response, including nonmonotonous magnetic-field-dependent magnetoresistance and sizable anomalous Hall resistivity, demonstrating Cr5Te8 as a promising material for constructing high-performance magnetoelectronic devices. This study presents a breakthrough of large-sized CVD-grown 2D magnetic materials, which is indispensable for constructing 2D spintronic devices.

2.
J Am Chem Soc ; 146(8): 5614-5621, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354217

RESUMEN

With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.

3.
Small ; 20(9): e2305798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849041

RESUMEN

As the most popular liquid metal (LM), gallium (Ga) and its alloys are emerging as functional materials due to their unique combination of fluidic and metallic properties near room temperature. As an important branch of utilizing LMs, micro- and submicron-particles of Ga-based LM are widely employed in wearable electronics, catalysis, energy, and biomedicine. Meanwhile, the phase transition is crucial not only for the applications based on this reversible transformation process, but also for the solidification temperature at which fluid properties are lost. While Ga has several solid phases and exhibits unusual size-dependent phase behavior. This complex process makes the phase transition and undercooling of Ga uncontrollable, which considerably affects the application performance. In this work, extensive (nano-)calorimetry experiments are performed to investigate the polymorph selection mechanism during liquid Ga crystallization. It is surprisingly found that the crystallization temperature and crystallization pathway to either α -Ga or ß -Ga can be effectively engineered by thermal treatment and droplet size. The polymorph selection process is suggested to be highly relevant to the capability of forming covalent bonds in the equilibrium supercooled liquid. The observation of two different crystallization pathways depending on the annealing temperature may indicate that there exist two different liquid phases in Ga.

4.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066060

RESUMEN

Elastic polymer-based conductive composites (EPCCs) are of great potential in the field of flexible sensors due to the advantages of designable functionality and thermal and chemical stability. As one of the popular choices for sensor electrodes and sensitive materials, considerable progress in EPCCs used in sensors has been made in recent years. In this review, we introduce the types and the conductive mechanisms of EPCCs. Furthermore, the recent advances in the application of EPCCs to sensors are also summarized. This review will provide guidance for the design and optimization of EPCCs and offer more possibilities for the development and application of flexible sensors.

5.
Nano Lett ; 23(22): 10498-10504, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939014

RESUMEN

Nonlayered two-dimensional (2D) magnets have attracted special attention, as many of them possess magnetic order above room temperature and enhanced chemical stability compared to most existing vdW magnets, which offers remarkable opportunities for developing compact spintronic devices. However, the growth of these materials is quite challenging due to the inherent three-dimensionally bonded nature, which hampers the study of their magnetism. Here, we demonstrate the controllable growth of air-stable pure γ-Fe2O3 nanoflakes by a confined-vdW epitaxial approach. The lateral size of the nanoflakes could be adjusted from hundreds of nanometers to tens of micrometers by precisely controlling the annealing time. Interestingly, a lateral-size-dependent magnetic domain configuration was observed. As the sizes continuously increase, the magnetic domain evolves from single domain to vortex and finally to multidomain. This work provides guidance for the controllable synthesis of 2D inverse spinel-type crystals and expands the range of magnetic vortex materials into magnetic semiconductors.

6.
Nano Lett ; 23(17): 8073-8080, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615627

RESUMEN

Due to the magnetoelastic coupling, the magnetic properties of many flexible magnetic films (such as Fe, Co, and Ni) are sensitive to mechanical stress, which deteriorates the performance of flexible magnetoelectronic devices. We show that by stacking Co and Pt alternatively to form multilayers with strong perpendicular magnetic anisotropy (PMA), both magnetic hysteresis and magnetic domain measurements reveal robust PMA against external stress. As the PMA weakens at increased Co thickness, the magnetic anisotropy is vulnerable to external stress. These results were understood based on a micromagnetic model, which suggests that the strength of magnetoelastic anisotropy with respect to initial effective magnetic anisotropy affects the stress-stability of the film. Although the stress coefficient of magnetoelastic anisotropy is enhanced at reduced Co thickness, the concomitant increase of initial effective magnetic anisotropy guarantees a robust PMA against external stress. Our results provide a route to constructing flexible magnetoelectronic devices with enhanced stress stability.

7.
Angew Chem Int Ed Engl ; 63(19): e202400511, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38488202

RESUMEN

As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.

8.
Small ; 19(16): e2206824, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683213

RESUMEN

Nanoionic technologies are identified as a promising approach to modulating the physical properties of solid-state dielectrics, which have resulted in various emergent nanodevices, such as nanoionic resistive switching devices and magnetoionic devices for memory and computing applications. Previous studies are limited to single-type ion manipulation, and the investigation of multiple-type ion modulation on the coupled magnetoelectric effects, for developing information devices with multiple integrated functionalities, remains elusive. Here, a dual-ion solid-state magnetoelectric heterojunction based on Pt/HfO2- x /NiOy /Ni with reconfigurable magnetoresistance (MR) characteristics is reported for in-memory encryption. It is shown that the oxygen anions and nickel cations can be selectively driven by voltages with controlled polarity and intensity, which concurrently change the overall electrical resistance and the interfacial magnetic coupling, thus significantly modulate the MR symmetry. Based on this device, a magnetoelectric memory prototype array with in-memory encryption functionality is designed for the secure storage of image and digit information. Along with the advantages including simple structure, multistate encryption, good reversibility, and nonvolatile modulation capability, this proof-of-concept device opens new avenues toward next-generation compact electronics with integrated information functionalities.

9.
Small ; 19(32): e2208211, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37078912

RESUMEN

Nowadays, the exploration of electromagnetic (EM) wave absorbers with anticorrosion to improve the survivability and environmental adaptability of military targets in the harsh environments is becoming an attractive and unavoidable challenge. Herein, through modulation of the metal composition in the precursors, the core@shell structure Prussian blue analog-derived NiCo@C, CoFe@C, NiFe@C, and NiCoFe@C are obtained with excellent EM wave absorption performance. As for NiCoFe@C, ascribed to the coupling effect of the dual magnetic alloy, a minimum reflection loss (RL) of -47.6 dB and an effective absorption bandwidthof 5.83 GHz are realized, which cover the whole Ku-band. Meanwhile, four absorbers display the lower corrosion current density (10-4 -10-6 A cm-2 ) and larger polarization resistance (104 -106  Ω) under acid, neutral, and alkaline corrosion conditions over uninterrupted 30 days. Furthermore, due to the spatial barrier effect and the passivation effect of the graphitic carbon shell , the continuous salt spray test has little effect on RL performance and inconspicuously changes the surface morphologies of coating, demonstrating its excellent bifunctional performance. This work lays the foundation for the development of metal-organic frameworks-derived materials with both anticorrosion and EM wave absorption performance.

10.
Sci Technol Adv Mater ; 24(1): 2162325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36684849

RESUMEN

With the rapid development of intelligent robotics, the Internet of Things, and smart sensor technologies, great enthusiasm has been devoted to developing next-generation intelligent systems for the emulation of advanced perception functions of humans. Neuromorphic devices, capable of emulating the learning, memory, analysis, and recognition functions of biological neural systems, offer solutions to intelligently process sensory information. As one of the most important neuromorphic devices, Electrolyte-gated transistors (EGTs) have shown great promise in implementing various vital neural functions and good compatibility with sensors. This review introduces the materials, operating principle, and performances of EGTs, followed by discussing the recent progress of EGTs for synapse and neuron emulation. Integrating EGTs with sensors that faithfully emulate diverse perception functions of humans such as tactile and visual perception is discussed. The challenges of EGTs for further development are given.

11.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112422

RESUMEN

With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented.

12.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408131

RESUMEN

Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in this field, a great disparity remains between material fabrication and practical applications on account of the high surface tension and unavoidable oxidation of LM. Here, the composition and nanolization of liquid metal can be envisioned as effective solutions to the processibility-performance dilemma caused by high surface tension. This review aims to summarize the strategies for the fabrication, processing, and application of LM-based nano-composites. The intrinsic mechanism and superiority of the composition method will further extend the capabilities of printable ink. Recent applications of LM-based nano-composites in printing are also provided to guide the large-scale production of stretchable electronics.

13.
Phys Chem Chem Phys ; 22(45): 26322-26329, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33175937

RESUMEN

The requests for higher information storage density, greater data processing power, and memory-centric computing capability in the current big data era are motivating global research interests in novel solid-state electronic devices that can unite the electron charge and spin degrees of freedom. Herein, the simultaneous realization of magnetism modulation and conductance quantization in a single gadolinium oxide memristor is reported. A remarkable enhancement of >170% in saturation magnetization at room temperature, accompanied by the emergence of a clear magnetoresistance behavior at low temperature, was obtained after setting the memristor from the initial high resistance state (HRS) into the low resistance state (LRS). By carefully resetting the memristor from the LRS into the HRS, up to 32 quantized conductance states with good repeatability and stability were observed, which could possibly allow achieving 5 bit storage in a single memory cell in the future. Moreover, the resistive switching mechanism of the memristor was thoroughly investigated with the help of temperature-dependent resistance tests and high-resolution transmission electron microscopy examination. This work could provide a powerful approach to design future multi-field modulated, high-performance information devices with integrated data storage, sensing, as well as processing functions.

14.
Chem Soc Rev ; 48(6): 1531-1565, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30398508

RESUMEN

The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.

15.
J Am Chem Soc ; 137(26): 8572-83, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26062868

RESUMEN

Research on stable open-shell singlet diradicaloids recently became a hot topic because of their unique optical, electronic, and magnetic properties and promising applications in materials science. So far, most reported singlet diradicaloid molecules have a symmetric structure, while asymmetric diradicaloids with an additional contribution of a dipolar zwitterionic form to the ground state were rarely studied. In this Article, a series of new push-pull type oligo(N-annulated perylene)quinodimethanes were synthesized. Their chain length and solvent-dependent ground states and physical properties were systematically investigated by various experimental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device, Raman spectroscopy, and electrochemistry. It was found that with extension of the chain length, the diradical character increases while the contribution of the zwitterionic form to the ground state becomes smaller. Because of the intramolecular charge transfer character, the physical properties of this push-pull system showed solvent dependence. In addition, density functional theory calculations on the diradical character and Hirshfeld charge were conducted to understand the chain length and solvent dependence of both symmetric and asymmetric systems. Our studies provided a comprehensive understanding on the fundamental structure- and environment-property relationships in the new asymmetric diradicaloid systems.

16.
J Am Chem Soc ; 136(50): 17477-83, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25420196

RESUMEN

The ever-emerging demands on miniaturization of electronic devices have pushed the development of innovative materials with desired properties. One major endeavor is the development of organic- or organic-inorganic hybrid-based electronics as alternatives or supplements to silicon-based devices. Herein we report the first observation of the coexistence of resistance switching and ferroelectricity in a metal-organic framework (MOF) material, [InC16H11N2O8]·1.5H2O, denoted as RSMOF-1. The electrical resistance of RSMOF-1 can be turned on and off repeatedly with a current ratio of 30. A first-principles molecular dynamics simulation suggests that the resistive switching effect is related to the ferroelectric transition of N···H-O···H-N bridge-structured dipoles of the guest water molecules and the amino-tethered MOF nanochannel. The discovery of the resistive switching effect and ferroelectricity in MOFs offers great potential for the physical implementation of novel electronics for next-generation digital processing and communication.

17.
Chemistry ; 20(36): 11410-20, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25056662

RESUMEN

Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcal mol(-1)), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds.

18.
Science ; 383(6690): 1416, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547296

RESUMEN

A ferroelectric molecular crystal displays characteristics required for implantation.

19.
ACS Appl Mater Interfaces ; 16(29): 38324-38333, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982664

RESUMEN

With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.

20.
Mater Horiz ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354842

RESUMEN

Polymer-based relaxor ferroelectrics with high dielectric constant are pivotal in cutting-edge electronic devices, power systems, and miniaturized pulsed electronics. The surge in flexible electronics technology has intensified the demand for elastic ferroelectric materials that exhibit excellent electrical properties and mechanical resilience, particularly for wearable devices and flexible displays. However, as an indispensable component, intrinsic elastomers featuring high dielectric constant and outstanding resilience specifically tailored for elastic energy storage remain undeveloped. Elastification of relaxor ferroelectric materials presents a promising strategy to obtain high-dielectric elastomers. In this study, we present a strain-insensitive, high elastic relaxor ferroelectric material prepared via peroxide crosslinking of a poly(vinylidene fluoride) (PVDF)-based copolymer at low temperature, which exhibits an intrinsic high dielectric constant (∼20 at 100 Hz) alongside remarkable thermal, chemical, and mechanical stability. This relaxor ferroelectric elastomer maintains a stable energy density (>8 J cm-3) and energy storage efficiency (>75%) under strains ranging from 0 to 80%. This strain-insensitive, high elastic relaxor ferroelectric elastomer holds significant potential for flexible electronic applications, offering superior performance in soft robotics, smart clothing, smart textiles, and electronic skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA