Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(1): 159-173.e9, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34982959

RESUMEN

To accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain. Transcriptional profiling of microglia with diverse metabolic profiles revealed an activation signature wherein the interleukin (IL)-33 signaling axis is associated with phagocytic activity. Genetic perturbation of IL-33 or its receptor ST2 led to microglial dystrophy, impaired synaptic function, and behavioral abnormalities. Conditional deletion of Il33 from astrocytes or Il1rl1, encoding ST2, in microglia increased susceptibility to seizures. Mechanistically, IL-33 promoted mitochondrial activity and phagocytosis in an AKT-dependent manner. Mitochondrial metabolism and AKT activity were temporally regulated in vivo. Thus, a microglia-astrocyte circuit mediated by the IL-33-ST2-AKT signaling axis supports microglial metabolic adaptation and phagocytic function during early development, with implications for neurodevelopmental and neuropsychiatric disorders.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Microglía/metabolismo , Mitocondrias/metabolismo , Convulsiones/inmunología , Animales , Conducta Animal , Susceptibilidad a Enfermedades , Sinapsis Eléctricas/metabolismo , Metabolismo Energético , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Ratones , Ratones Noqueados , Microglía/patología , Neurogénesis/genética , Proteína Oncogénica v-akt/metabolismo , Fagocitosis , Transducción de Señal
2.
Small ; 20(15): e2307998, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010124

RESUMEN

Single-crystal lithium-rich layered oxides (LLOs) with excellent mechanical properties can enhance their crystal structure stability. However, the conventional methods for preparing single-crystal LLOs, require large amounts of molten salt additives, involve complicated washing steps, and increase the difficulty of large-scale production. In this study, a sodium tungstate (Na2WO4)-assisted sintering method is proposed to fabricate high-performance single-crystal LLOs cathode materials without large amounts of additives and additional washing steps. During the sintering process, Na2WO4 promotes particle growth and forms a protective coating on the surface of LLOs particles, effectively suppressing the side reactions at the cathode/electrolyte interface. Additionally, trace amounts of Na and W atoms are doped into the LLOs lattice via gradient doping. Experimental results and theoretical calculations indicate that Na and W doping stabilizes the crystal structure and enhances the Li+ ions diffusion rate. The prepared single-crystal LLOs exhibit outstanding capacity retention of 82.7% (compared to 65.0%, after 200 cycles at 1 C) and a low voltage decay rate of 0.76 mV per cycle (compared to 1.80 mV per cycle). This strategy provides a novel pathway for designing the next-generation high-performance cathode materials for Lithium-ion batteries (LIBs).

3.
Toxicol Appl Pharmacol ; 485: 116915, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537875

RESUMEN

N-myc downstream-regulated gene 2 (NDRG2) has been recognised as a negative regulator of the progression of numerous tumours, yet its specific role in small-cell lung carcinoma (SCLC) is not fully understood. The purpose of the current study was to investigate the biological role and mechanism of NDRG2 in SCLC. Initial investigation using the Gene Expression Omnibus (GEO) dataset revealed marked downregulation of NDRG2 transcripts in SCLC. The decreased abundance of NDRG2 in SCLC was verified by examining clinical specimens. Increasing NDRG2 expression in SCLC cell lines caused significant changes in cell proliferation, cell cycle progression, colony formation, and chemosensitivity. NDRG2 overexpression decreased the levels of phosphorylated PTEN, AKT and mTOR. In PTEN-depleted SCLC cells, the upregulation of NDRG2 did not result in any noticeable impact on AKT or mTOR activation. Additionally, the reactivation of AKT reversed the antitumour effects of NDRG2 in SCLC cells. Notably, increasing NDRG2 expression retarded the growth of SCLC cell-derived xenografts in vivo. In conclusion, NDRG2 serves as an inhibitor of SCLC, and its cancer-inhibiting effects are achieved through the suppression of AKT/mTOR via the activation of PTEN. This work suggests that NDRG2 is a potential druggable target for SCLC treatment.


Asunto(s)
Proliferación Celular , Neoplasias Pulmonares , Ratones Desnudos , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas , Serina-Treonina Quinasas TOR , Proteínas Supresoras de Tumor , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ratones , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Toxicol Appl Pharmacol ; 489: 117005, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880190

RESUMEN

A remarkable cancer-related role of zinc finger protein 367 (ZNF367) has been demonstrated in multiple malignancies. However, whether ZNF367 has a role in small-cell lung cancer (SCLC) remains unexplored. The purpose of this work was to explore the potential role and mechanism of ZNF367 in SCLC. In silico analysis using the Gene Expression Omnibus (GEO) dataset revealed high levels of the ZNF367 transcript in SCLC. Examination of clinical tissues confirmed the significant abundance of ZNF367 in SCLC tissues compared with adjacent non-malignant tissues. The genetic depletion of ZNF367 in SCLC cells led to remarkable alterations in cell proliferation, the cell cycle, colony formation and chemosensitivity. Mechanistically, ZNF367 was shown to regulate the activation of yes-associated protein (YAP) associated with the up-regulation of phosphorylated large tumour suppressor kinase 2 (LATS2). Further investigation revealed that ZNF367 affected the LATS2-YAP cascade by regulating the expression of citron kinase (CIT). Re-expression of constitutively active YAP diminished the tumour-inhibiting function of ZNF367 depletion. Xenograft experiments confirmed the tumour-inhibiting effect of ZNF367 depletion in vivo. In summary, our results demonstrate that the inhibition of ZNF367 displays anticancer effects in SCLC by inhibiting YAP activation, suggesting it as a potential druggable oncogenic target.

5.
Mol Psychiatry ; 28(11): 4877-4888, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37365243

RESUMEN

We previously reported that prolonged exposure to an enriched environment (EE) enhances hippocampal synaptic plasticity, with one of the significant mechanistic pathways being activation of ß2-adrenergic receptor (ß2-AR) signaling, thereby mitigating the synaptotoxic effects of soluble oligomers of amyloid ß-protein (oAß). However, the detailed mechanism remained elusive. In this work, we recorded field excitatory postsynaptic potentials (fEPSP) in the CA1 region of mouse hippocampal slices treated with or without toxic Aß-species. We found that pharmacological activation of ß2-AR, but not ß1-AR, selectively mimicked the effects of EE in enhancing LTP and preventing oAß-induced synaptic dysfunction. Mechanistic analyses showed that certain histone deacetylase (HDAC) inhibitors mimicked the benefits of EE, but this was not seen in ß2-AR knockout mice, suggesting that activating ß2-AR prevents oAß-mediated synaptic dysfunction via changes in histone acetylation. EE or activation of ß-ARs each decreased HDAC2, whereas Aß oligomers increased HDAC2 levels in the hippocampus. Further, oAß-induced inflammatory effects and neurite degeneration were prevented by either ß2-AR agonists or certain specific HDAC inhibitors. These preclinical results suggest that activation of ß2-AR is a novel potential therapeutic strategy to mitigate oAß-mediated features of AD.


Asunto(s)
Péptidos beta-Amiloides , Hipocampo , Ratones , Animales , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Transducción de Señal , Epigénesis Genética , Ratones Noqueados
6.
Mol Cell Biochem ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175377

RESUMEN

Esophageal cancer (EC) is a familiar digestive tract tumor with highly lethal. The hypoxic environment has been demonstrated to be a significant factor in modulating malignant tumor progression and is strongly associated with the abnormal energy metabolism of tumor cells. Serine hydroxymethyl transferase 2 (SHMT2) is one of the most frequently expressed metabolic enzymes in human malignancies. The study was designed to investigate the biological functions and regulation mechanisms of SHMT2 in EC under hypoxia. We conducted RT-qPCR to assess SHMT2 levels in EC tissues and cells (TE-1 and EC109). EC cells were incubated under normoxia and hypoxia, respectively, and altered SHMT2 expression was evaluated through RT-qPCR, western blot, and immunofluorescence. The biological functions of SHMT2 on EC cells were monitored by performing CCK-8, EdU, transwell, sphere formation, glucose uptake, and lactate production assays. The SHMT2 protein lactylation was measured by immunoprecipitation and western blot. In addition, SHMT2-interacting proteins were analyzed by bioinformatics and validated by rescue experiments. SHMT2 was notably upregulated in EC tissues and cells. Hypoxia elevated SHMT2 protein expression, augmenting EC cell proliferation, migration, invasion, stemness, and glycolysis. In addition, hypoxia triggered lactylation of the SHMT2 protein and enhanced its stability. SHMT2 knockdown impeded the malignant phenotype of EC cells. Further mechanistic studies disclosed that SHMT2 is involved in EC progression by interacting with MTHFD1L. Hypoxia-induced SHMT2 protein lactylation and upregulated its protein level, which in turn enhanced MTHFD1L expression and accelerated the malignant progression of EC cells.

7.
J Neurochem ; 165(3): 289-302, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36799441

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid ß protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of ß2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of ß2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that ß2 -AR agonists may play a neuroprotective role. The ß2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of ß2 -AR agonists on several neurodegenerative diseases. Thus, I propose that ß2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Adrenérgicos/farmacología , Péptidos beta-Amiloides/farmacología , Microglía
8.
BMC Cancer ; 23(1): 796, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620791

RESUMEN

BACKGROUND: The optimal treatment for multiple brain metastases has been recently controversially discussed.This study was aimed to explore the feasibility of Hippocampus-Avoidance Whole-Brain Radiotherapy plus a simultaneous integrated boost (HA-WBRT + SIB) in patients with multiple brain metastases and assess tumor control in comparison with Hippocampus-Avoidance Whole-Brain Radiotherapy (HA-WBRT) alone for brain metastases. METHODS: In this study, 63 patients with multiple brain metastases (≥ 4 metastases) had undergone HA-WBRT + SIB between January 2016 and December 2020 in the observation group:HA-WBRT (30 Gy in 12 fractions, the maximum dose of the hippocampus ≤ 14 Gy) plus a simultaneous integrated boost (48 Gy in 12 fractions) for brain metastases.Overall Survival (OS), Median survival,intracranial control (IC = control within the entire brain), intracranial progression-free survival (iPFS) and adverse events were compared with the control group (a HA-WBRT retrospective cohort) by propensity score matching analysis. RESULTS: After 1:1 propensity score matching,there were 56 patients in each group (the observation group, the control group). OS, median survival and iPFS were significantly longer in the observation group (18.4 vs. 10.9 months, P<0.001), (13.0 vs. 8.0 months, P<0.001), (13.9 vs.7.8 months, P<0.001). In comparison of 1-year-IC rates, the observation group also demonstrated higher than the control group (51.8% vs. 21.4%, P = 0.002), respectively. Seven hippocampal metastases were found in the control group (4/56,7.1%) and the observation group (3/56,5.4%) after HA-WBRT. The death rate of intracranial progression were 23.2% in the observation group and 37.5% in the control group.All adverse events were not significant difference between the two groups (P>0.05). CONCLUSIONS: HA-WBRT + SIB resulted in better OS,median survival, IC, iPFS, an acceptable risk of radiation response, and a potential way of declining neurocognitive adverse events, which may be a better treatment for patients with multiple brain metastases.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Humanos , Estudios Retrospectivos , Puntaje de Propensión , Neoplasias Encefálicas/radioterapia , Hipocampo
9.
Mol Psychiatry ; 27(8): 3182-3191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35484241

RESUMEN

The accumulation of amyloid-ß protein (Aß) plays an early role in the pathogenesis of Alzheimer's disease (AD). The precise mechanism of how Aß accumulation leads to synaptic dysfunction and cognitive impairment remains unclear but is likely due to small soluble oligomers of Aß (oAß). Most studies have used chemical synthetic or cell-secreted Aß oligomers to study their pathogenic mechanisms, but the Aß derived from human AD brain tissue is less well characterized. Here we review updated knowledge on the extraction and characterization of bioactive human AD brain oAß and the mechanisms by which they cause hippocampal synaptic dysfunction. Human AD brain-derived oAß can impair hippocampal long-term potentiation (LTP) and enhance long-term depression (LTD). Many studies suggest that oAß may directly disrupt neuronal NMDA receptors, AMPA receptors and metabotropic glutamate receptors (mGluRs). oAß also impairs astrocytic synaptic functions, including glutamate uptake, D-serine release, and NMDA receptor function. We also discuss oAß-induced neuronal hyperexcitation. These results may suggest a multi-target approach for the treatment of AD, including both oAß neutralization and reversal of glutamate-mediated excitotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Potenciación a Largo Plazo/fisiología , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutámico/metabolismo
10.
Am J Respir Crit Care Med ; 206(12): 1480-1494, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848993

RESUMEN

Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción SOXB1 , Carcinoma Pulmonar de Células Pequeñas , Factor Nuclear Tiroideo 1 , Animales , Humanos , Ratones , Transformación Celular Neoplásica , Pulmón , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor Nuclear Tiroideo 1/genética
11.
World J Surg Oncol ; 21(1): 238, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37537652

RESUMEN

OBJECTIVES: Although postoperative radiotherapy (PORT) could reduce the incidence of local recurrence in patients with IIIA-N2 non-small cell lung cancer (NSCLC), the role of PORT on survival in patients with surgically treated stage IIIA-N2 NSCLC remains controversial. Therefore, this study was designed to evaluate the effect of PORT on survival for patients with surgically treated stage IIIA-N2 NSCLC. MATERIALS AND METHODS: This study population was chosen from the Surveillance, Epidemiology, and End Results database. The Cox proportional hazards regression analysis was used to determine significant contributors to overall survival (OS) and cancer special survival (CSS) outcomes. To balance baseline characteristics between the non-PORT group and PORT group, propensity score matching (PSM) with 1:1 propensity nearest-neighbor match by 0.001 matching tolerance was conducted by R software. Furthermore, a Kaplan-Meier curve was used to visualize the OS and CSS between the PORT group and non-PORT group survival probability. RESULTS: Of all evaluated cases, 4511 with IIIA-N2 NSCLC were eligible for inclusion, of which 1920 were enrolled into the PORT group. On univariate analysis and multivariate analysis, sex, age, year of diagnosis, race, histologic type, T stage, PORT, use of chemotherapy, and positive regional nodes were significantly associated with OS and CSS in IIIA-N2 NSCLC (P < 0.05). However, PORT was not significantly associated with OS (univariate HR = 0.92, 95%CI 0.85-0.99, P = 0.02; multivariate HR = 1.01, 95%CI 0.93-1.08, P = 0.91) and CSS (univariate HR = 0.92, 95%CI 0.85-1.01, P = 0.06; multivariate HR = 1.103 95%CI 0.94-1.12, P = 0.56) in IIIA-N2 NSCLC. Meanwhile, after PSM, neither OS nor CSS did differ significantly between the non-PORT group and PORT group (OS HR = 1.08, 95%CI 0.98-1.19, P = 0.12; CSS HR = 1.10, 95%CI 0.99-1.23, P = 0.07). CONCLUSION: PORT did not contribute to a survival benefit in patients with surgically treated stage IIIA-N2 NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Radioterapia Adyuvante , Estadificación de Neoplasias , Neumonectomía
12.
Ecotoxicol Environ Saf ; 254: 114767, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917879

RESUMEN

The occurrence of polycyclic aromatic hydrocarbon (PAH) derivatives in the environment is of growing concern because they exhibit higher toxicity than their parent PAHs. This study evaluated the large-scale occurrence and spatiotemporal distribution of 16 PAHs and 14 oxygenated PAHs (OPAHs) in urban agricultural soils from seven districts of Guangzhou City, China. Linear correlation analysis was conducted to explore the relationship between PAH and OPAH occurrence and a series of parameters. The compositional analysis, principal component analysis, diagnostic ratios, and principal component analysis coupled with a multiple linear regression model were used to identify the sources of PAHs and OPAHs in the soils. The average concentrations of ΣPAHs and ΣOPAHs (59.6 ± 31.1-213 ± 115.5 µg/kg) during the flood season were significantly higher than those during the dry season (42.1 ± 13.3-157.2 ± 98.2 µg/kg), which were due to relatively strong wet deposition during the flood season and weak secondary reactions during the dry season. Linear correlation analysis showed that soil properties, industrial activities, and agricultural activities (r = 0.27-0.96, p < 0.05) were responsible for the spatial distribution of PAHs during the dry season. The PAH distribution was mainly affected by precipitation during the flood season. The concentrations of ΣOPAHs were only related to the soil properties during the dry season because their occurrence was sensitive to secondary reactions, climate and meteorological conditions, and their water solubility. Our results further showed that coal combustion and traffic emissions were the dominant origins of PAHs and OPAHs during both the seasons. Wet deposition and runoff-induced transport also contributed to PAH and OPAH occurrence during the flood season. The results of this study can improve our understanding of the environmental risks posed by PAHs and OPAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , China
13.
Neurobiol Dis ; 172: 105816, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820646

RESUMEN

Early cognitive impairment in Alzheimer's disease may result in part from synaptic dysfunction caused by the accumulation oligomeric assemblies of amyloid ß-protein (Aß). Changes in hippocampal function seem critical for cognitive impairment in early Alzheimer's disease (AD). Diffusible oligomers of Aß (oAß) have been shown to block canonical long-term potentiation (LTP) in the CA1 area of hippocampus, but whether there is also a direct effect of oAß on synaptic transmission and plasticity at synapses between mossy fibers (axons) from the dentate gyrus granule cells and CA3 pyramidal neurons (mf-CA3 synapses) is unknown. Studies in APP transgenic mice have suggested an age-dependent impairment of mossy fiber LTP. Here we report that although endogenous AD brain-derived soluble oAß had no effect on mossy-fiber basal transmission, it strongly impaired paired-pulse facilitation in the mossy fiber pathway and presynaptic mossy fiber LTP (mf-LTP). Selective activation of both ß1 and ß2 adrenergic receptors and their downstream cAMP/PKA signaling pathway prevented oAß-mediated inhibition of mf-LTP. Unexpectedly, activation of the cGMP/PKG signaling pathway also prevented oAß-impaired mf-LTP. Our results reveal certain specific pharmacological targets to ameliorate human oAß-mediated impairment at the mf-CA3 synapse.


Asunto(s)
Enfermedad de Alzheimer , Potenciación a Largo Plazo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
14.
J Integr Neurosci ; 21(6): 160, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36424752

RESUMEN

BACKGROUND: Matrix metalloproteinase-9 (MMP-9) is a significant protease required for synaptic plasticity, learning, and memory. Yet, the role of MMP-9 in the occurrence and development of cognitive decline after ischemic stroke is not fully understood. In this study, we used clinical data experiments to further investigate whether MMP-9 and genetic polymorphism are associated with post-stroke cognitive impairment or dementia (PSCID). MATERIALS AND METHODS: A total of 148 patients with PSCID confirmed by the Montreal Cognitive Assessment (MoCA) 3 months after onset (PSCID group) were included in the study. The MMP-9 rs3918242 polymorphisms were analyzed using polymerase chain reaction coupled with restriction fragment length polymorphism, and the serum level of MMP-9 was measured using enzyme-linked immunosorbent assay (ELISA). The same manipulations have been done on 169 ischemic stroke patients without cognitive impairment (NCI group) and 150 normal controls (NC group). RESULTS: The expression level of serum MMP-9 in the PSCID group and NCI group was higher compared to the NC group, and the levels in the PSCID group were higher than that in the NCI group (all p < 0.05). Diabetes mellitus, hyperhomocysteinemia, and increased serum MMP-9 levels were the main risk factors of cognitive impairment after ischemic stroke. The serum level of MMP-9 was negatively correlated with the MoCA score, including visual-spatial executive, naming, attention, language, and delayed recall. Genetic polymorphism showed that TC genotype with MMP-9 rs3918242 and CC genotype were associated with a significantly increased risk of PSCID; moreover, the TC genotype significantly increased the risk of cognitive impairment. In the TCCC genotype of MMP-9 rs3918242, diabetes mellitus and hyperhomocysteinemia were associated with the increased risk of PSCID; also, hyperhomocysteinemia could increase the risk of cognitive impairment. CONCLUSIONS: MMP-9 level and MMP-9 rs3918242 polymorphism have an important role in the occurrence and development of post-stroke cognitive impairment or dementia (PSCID).


Asunto(s)
Disfunción Cognitiva , Demencia , Hiperhomocisteinemia , Accidente Cerebrovascular Isquémico , Metaloproteinasa 9 de la Matriz , Humanos , Disfunción Cognitiva/genética , Demencia/genética , Demencia/complicaciones , Hiperhomocisteinemia/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Metaloproteinasa 9 de la Matriz/genética
15.
J Stroke Cerebrovasc Dis ; 31(12): 106759, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36201989

RESUMEN

OBJECTIVES: To investigate the correlation and predictive value of serum matrix metalloproteinase-9 (MMP-9) level with cognitive dysfunction and total imaging load in patients with cerebral small vessel disease (CSVD). METHODS: A total of 80 patients with CSVD who were admitted to the First Affiliated Hospital of Xinxiang Medical University between April 2019 and April 2020 were enrolled. All subjects underwent T1-weighted imaging (T1WI), T2WI, fluid-attenuated inversion recovery (FLAIR), diffusion weighted imaging (DWI), serum sample collection, and assessment of cognitive function at a specific time-point after admission. According to the results of the neuropsychological test, subjects were divided into cognitive dysfunction group (n=40) and normal cognitive function group (n=40). The total imaging load was estimated according to the neuroimaging findings. Serum MMP-9 level was measured by an enzyme-linked immunosorbent assay (ELISA) kit. Beside, serum MMP-9 level and total imaging load were compared between the two groups. RESULTS: Serum levels of MMP-9 and plasma total homocysteine (tHcy) were negatively correlated with cognitive function (P<0.05). Serum MMP-9 level was found as a significant factor for diagnosing cognitive impairment due to CSVD (area under the curve (AUC), 0.756; sensitivity and specificity were 97.5% and 75.0%, respectively). THcy level was also found as significant factor for diagnosing cognitive impairment due to CSVD (area under the curve (AUC), 0.727; sensitivity and specificity were 97.5% and 75.0%, respectively). CONCLUSION: Serum MMP-9 level and tHcy level were significantly correlated with cognitive function in patients with CSVD. Serum MMP-9 level has a specific correlation with the total imaging load in patients with CSVD. It plays an important role in diagnosing cognitive impairment in patients with CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Humanos , Metaloproteinasa 9 de la Matriz , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Imagen por Resonancia Magnética , Neuroimagen
16.
J Cell Mol Med ; 25(18): 8748-8763, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34374193

RESUMEN

Glioma is the most common malignancy of the nervous system with high rates of recurrence and mortality, even after surgery. The 5-year survival rate is only about 5%. NEK8 is involved in multiple biological processes in a variety of cancers; however, its role in glioma is still not clear. In the current study, we evaluated the prognostic value of NEK8, as well as its role in the pathogenesis of glioma. Using a bioinformatics approach and RNA-seq data from public databases, we found that NEK8 expression is elevated in glioma tissues; we further verified this result by RT-PCR, Western blotting and immunochemistry using clinical samples. Functional enrichment analyses of genes with correlated expression indicated that elevated NEK8 expression is associated with increased immune cell infiltration in glioma and may affect the tumour microenvironment via the regulation of DNA damage/repair. Survival analyses revealed that high levels of NEK8 are associated with a poorer prognosis; higher WHO grade, IDH status, 1p/19q codeletion, age and NEK8 were identified as an independent prognostic factor. These findings support the crucial role of NEK8 in the progression of glioma via effects on immune cell infiltration and suggest that it is a new prognostic biomarker.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Glioma , Quinasas Relacionadas con NIMA/metabolismo , Glioma/inmunología , Glioma/metabolismo , Glioma/terapia , Humanos , Infiltración Leucémica/patología , Pronóstico , Tasa de Supervivencia , Microambiente Tumoral
17.
Opt Express ; 29(8): 11683-11692, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984944

RESUMEN

We present a novel approach based on dual-sideband heterodyne phase-sensitive detection of dispersion spectroscopy to realize simultaneous measurement of the gas absorption signal and corresponding path length. The details of heterodyne phase-sensitive detection of dispersion spectroscopy are derived. A standard Mach-Zehnder intensity modulator (MZM) is adopted to generate a spectrum of a carrier and two sidebands. Phase shift of the beatnote signal generated by the two sidebands is detected to retrieve the path length as well as the gas absorption signal. The measurement range of the path length can be adapted by changing the modulation frequency. Proof-of-principle experiments are conducted with methane (CH4) as the absorber which is filled into a gas cell with a variable path length. We also utilize this approach to evaluate the path length of a White cell and meanwhile calibrate the experimental system with different concentrations of methane. The proposed method has a great potential for detecting the path length and gas absorption in multipass cells and the open path environment.

18.
Water Sci Technol ; 84(12): 3629-3640, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928831

RESUMEN

This work reports a novel carrier flotation protocol for removing scaling cations from an oilfield produced water source which significantly reduces the collector consumption by employing natural minerals such as quartz, montmorillonite and talcum as the scaling cations carriers. The scaling cations uptake onto all carrier minerals exhibited homogeneous and monolayer adsorption, which was mainly dominated by physisorption. After adding oleate collector, the scaling cations removal rate was further enhanced, which was attributed to its high affinity with the scaling cations. Notably, the talcum flotation process simultaneously offered a high scaling cations removal rate (76.1%) and mineral recovery rate (98.3%), which achieved a sediment yield reduction of 72.2%. By summarizing the characterization results, the scaling cations removal mechanisms were also proposed. Moreover, high regeneration efficiencies (86.1% and 84.8% for quartz and talcum regeneration within three cycles) were achieved by the proposed regeneration protocol. This carrier flotation protocol with its low collector consumption offered technical promise for scaling cations removal from oilfield produced water.


Asunto(s)
Yacimiento de Petróleo y Gas , Agua , Cationes , Minerales
19.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(2): 145-152, 2021 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-33825372

RESUMEN

Coagulometer, known as blood coagulation analyzer, is a product that can provide accurate test results for medical diagnosis and treatment analysis by detecting a series of items closely related to thrombosis and hemostasis in coagulation reaction. On the basis of previous traditional methods, and with our deep understanding about the principles of hemagglutination detection, we propose a hemagglutination detection method by using the dual-magnetic circuit beads method. Then, the corresponding hemagglutination detection module is designed. The coagulation time of plasma can be measured by detecting the movement of the magnetic beads when the magnetic field intensity is appropriate. The activated partial thromboplastin time(APTT) of plasma is tested when the most suitable magnetic field intensity is found. The results preliminarily show that this blood coagulation test method is valid and the corresponding test module has a potential value in business.


Asunto(s)
Coagulación Sanguínea , Magnetismo , Pruebas de Coagulación Sanguínea , Fenómenos Magnéticos , Tiempo de Tromboplastina Parcial
20.
J Neurochem ; 154(6): 583-597, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32180217

RESUMEN

It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid ß-protein (Aß). Most studies have used synthetic Aß peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aß assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aß oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aß oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Animales , Química Encefálica , Humanos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA