Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 30(43): e1801629, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30252179

RESUMEN

Van der Waals interactions in 2D materials have enabled the realization of nanoelectronics with high-density vertical integration. Yet, poor energy transport through such 2D-2D and 2D-3D interfaces can limit a device's performance due to overheating. One long-standing question in the field is how different encapsulating layers (e.g., contact metals or gate oxides) contribute to the thermal transport at the interface of 2D materials with their 3D substrates. Here, a novel self-heating/self-sensing electrical thermometry platform is developed based on atomically thin, metallic Ti3 C2 MXene sheets, which enables experimental investigation of the thermal transport at a Ti3 C2 /SiO2 interface, with and without an aluminum oxide (AlOx ) encapsulating layer. It is found that at room temperature, the thermal boundary conductance (TBC) increases from 10.8 to 19.5 MW m-2 K-1 upon AlOx encapsulation. Boltzmann transport modeling reveals that the TBC can be understood as a series combination of an external resistance between the MXene and the substrate, due to the coupling of low-frequency flexural acoustic (ZA) phonons to substrate modes, and an internal resistance between ZA and in-plane phonon modes. It is revealed that internal resistance is a bottle-neck to heat removal and that encapsulation speeds up the heat transfer into low-frequency ZA modes and reduces their depopulation, thus increasing the effective TBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA