Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7957): 488-494, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076729

RESUMEN

Depolymerization is a promising strategy for recycling waste plastic into constituent monomers for subsequent repolymerization1. However, many commodity plastics cannot be selectively depolymerized using conventional thermochemical approaches, as it is difficult to control the reaction progress and pathway. Although catalysts can improve the selectivity, they are susceptible to performance degradation2. Here we present a catalyst-free, far-from-equilibrium thermochemical depolymerization method that can generate monomers from commodity plastics (polypropylene (PP) and poly(ethylene terephthalate) (PET)) by means of pyrolysis. This selective depolymerization process is realized by two features: (1) a spatial temperature gradient and (2) a temporal heating profile. The spatial temperature gradient is achieved using a bilayer structure of porous carbon felt, in which the top electrically heated layer generates and conducts heat down to the underlying reactor layer and plastic. The resulting temperature gradient promotes continuous melting, wicking, vaporization and reaction of the plastic as it encounters the increasing temperature traversing the bilayer, enabling a high degree of depolymerization. Meanwhile, pulsing the electrical current through the top heater layer generates a temporal heating profile that features periodic high peak temperatures (for example, about 600 °C) to enable depolymerization, yet the transient heating duration (for example, 0.11 s) can suppress unwanted side reactions. Using this approach, we depolymerized PP and PET to their monomers with yields of about 36% and about 43%, respectively. Overall, this electrified spatiotemporal heating (STH) approach potentially offers a solution to the global plastic waste problem.

2.
J Am Chem Soc ; 146(3): 2167-2173, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214166

RESUMEN

Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.

3.
Nano Lett ; 23(18): 8411-8418, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37677149

RESUMEN

Bamboo composite is an attractive candidate for structural materials in applications such as construction, the automotive industry, and logistics. However, its development has been hindered due to the use of harmful petroleum-derived synthetic adhesives or low-bonding biobased adhesives. Herein, we report a novel bioadhesion strategy based on in situ lignin bonding that can process natural bamboo into a scalable and high-performance composite. In this process, lignin bonds the cellulose fibrils into a strong network via a superstrong adhesive interface formed by hydrogen bonding and nanoscale entanglement. The resulting in situ glued-bamboo (glubam) composite exhibits a record-high shear strength of ∼4.4 MPa and a tensile strength of ∼300 MPa. This in situ lignin adhesion strategy is facile, highly scalable, and cost-effective, suggesting a promising route for fabricating strong and sustainable structural bamboo composites that sequester carbon and reduce our dependence on petrochemical-based adhesives.

4.
Nano Lett ; 23(16): 7733-7742, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37379097

RESUMEN

Electrochemical reduction of nitrate to ammonia (NH3) converts an environmental pollutant to a critical nutrient. However, current electrochemical nitrate reduction operations based on monometallic and bimetallic catalysts are limited in NH3 selectivity and catalyst stability, especially in acidic environments. Meanwhile, catalysts with dispersed active sites generally exhibit a higher atomic utilization and distinct activity. Herein, we report a multielement alloy nanoparticle catalyst with dispersed Ru (Ru-MEA) with other synergistic components (Cu, Pd, Pt). Density functional theory elucidated the synergy effect of Ru-MEA than Ru, where a better reactivity (NH3 partial current density of -50.8 mA cm-2) and high NH3 faradaic efficiency (93.5%) is achieved in industrially relevant acidic wastewater. In addition, the Ru-MEA catalyst showed good stability (e.g., 19.0% decay in FENH3 in three hours). This work provides a potential systematic and efficient catalyst discovery process that integrates a data-guided catalyst design and novel catalyst synthesis for a range of applications.

5.
Small ; 18(11): e2104761, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35049145

RESUMEN

High-entropy nanoparticles have received notable attention due to their tunable properties and broad material space. However, these nanoparticles are not suitable for certain applications (e.g., battery electrodes), where their microparticle (submicron to micron) counterparts are more preferred. Conventional methods used for synthesizing high-entropy nanoparticles often involve various ultrafast shock processes. To increase the size thereby achieving high-entropy microparticles, longer reaction time (e.g., heating duration) is usually used, which may also lead to undesired particle overgrowth or even densified microstructures. In this work, an approach based on Joule heating for synthesizing high-entropy oxide (HEO) microparticles with uniform elemental distribution is reported. In particular, two key synthesis conditions are identified to achieve high-quality HEO microparticles: 1) the precursors need to be loosely packed to avoid densification; 2) the heating time needs to be accurately controlled to tens of seconds instead of using milliseconds (thermal shock) that leads to nanoparticles or longer heating duration that forms bulk structures. The utility of the synthesized HEO microparticles for a range of applications, including high-performance Li-ion battery anode and water oxidation catalyst. This study opens up a new door toward synthesizing high-entropy microparticles with high quality and broad material space.

6.
J Colloid Interface Sci ; 642: 235-245, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004258

RESUMEN

Oxygen vacancies can regulate the coordination structure and electronic states of atoms, thus promoting the formation of surface-active sites and increasing the conductivity of the electrode material. This work presents a design for MXene@Ce-MOF composites with abundant oxygen vacancies. The hydroxyl groups on the surface of monolayer MXene attract cerium ions, which create surface defects in Ce-MOF and further promote the formation of oxygen vacancies. This results in a significant improvement in energy storage capacity, as well as performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The MXene@Ce-MOF composite exhibits a specific capacity of 496 F g-1, which is 1.8 times higher than that of pure Ce-MOF and 3.5 times higher than MXene alone. At a current density of 10 mA cm-2, the overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is as low as 270 and 220 mV, respectively, and the composite exhibits excellent cycling stability. Oxygen vacancy-based MOF composites play a crucial role in electrocatalysis and energy conversion.

7.
J Colloid Interface Sci ; 622: 378-389, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525141

RESUMEN

The main challenge hindering the use of Pt nanoparticles (Pt NPs) for electrochemical applications is their high cost and agglomeration. Herein, a trifunctional electrode material based on a two-dimensional cerium-based metal organic framework (2D Ce-MOF) decorated with Pt NPs is constructed. The large specific surface area of the 2D Ce-MOF can effectively prevent the phenomenon of Pt NPs reaction. The strong synergy between Pt NPs and the 2D Ce-MOF not only significantly enhances electron transport efficiency, but also increases the number of electrochemically reaction reactive sites. As a result, the Ce-MOF@Pt presents excellent performance in the HER (Hydrogen Evolution Reaction), OER (Oxygen Evolution Reaction) and supercapacitor reactions. The Tafel slopes of OER and HER are 47.9 and 188.1 mV dec-1, respectively. Meanwhile, Ce-MOF@Pt-0.05 shows a specific capacity of 1894F g-1 at a current density of 1 A g-1 and remains at 111.5% of the initial capacitance after 3000 cycles. In general, this study highlights the importance of Pt NPs in promoting the electrochemical performance of MOFs and reveals a new way to reduce electrocatalyst prices.

8.
J Colloid Interface Sci ; 626: 426-434, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35803142

RESUMEN

Reasonable regulating the electronic structure is one of the effective strategies for improving the conductivity of metal-organic frameworks (MOFs) based electrocatalysts. Herein, a series of Fe-MOF/Au composites grown in situ on Fe Foam (FF) were prepared through a hydrothermal and the controlled electrodeposition time strategy, in which the Fe Foam acts both as the conductive substrate and a self-sacrificing template. The electronic structure of the Fe-MOF/Au/FF composites can be finely adjusted by tailoring the electrodeposition time. Therefore, the Fe-MOF/Au/FF composites possess enhanced conductivity, accompanied by increased electrochemical activity of specific areas and oxygen evolution (OER), hydrogen evolution (HER) and overall water splitting properties. In particular, the optimized Fe-MOF/Au-8/FF composites used as bifunctional electrocatalysts for overall water splitting require only small voltage of 1.61 V to achieve a current density of 10 mA cm-2. This strategy will provide new inspiration and creativity to enhance the electrocatalytic performance of MOF-based electrocatalysts for hydrogen conversion and application.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Electrónica , Galvanoplastia , Oro , Hidrógeno , Agua
9.
Nat Commun ; 13(1): 6724, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344574

RESUMEN

Multi-principal element alloys (MPEA) demonstrate superior synergetic properties compared to single-element predominated traditional alloys. However, the rapid melting and uniform mixing of multi-elements for the fabrication of MPEA structural materials by metallic 3D printing is challenging as it is difficult to achieve both a high temperature and uniform temperature distribution in a sufficient heating source simultaneously. Herein, we report an ultrahigh-temperature melt printing method that can achieve rapid multi-elemental melting and uniform mixing for MPEA fabrication. In a typical fabrication process, multi-elemental metal powders are loaded into a high-temperature column zone that can be heated up to 3000 K via Joule heating, followed by melting on the order of milliseconds and mixing into homogenous alloys, which we attribute to the sufficiently uniform high-temperature heating zone. As proof-of-concept, we successfully fabricated single-phase bulk NiFeCrCo MPEA with uniform grain size. This ultrahigh-temperature rapid melt printing process provides excellent potential toward MPEA 3D printing.

11.
Food Funct ; 5(1): 42-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162728

RESUMEN

Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.


Asunto(s)
Alcohol Deshidrogenasa/análisis , Aldehído Deshidrogenasa/análisis , Bebidas/análisis , Preparaciones de Plantas/análisis , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Bebidas Gaseosas/análisis , Etanol/metabolismo , Humanos , Té/química , Té/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA