Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38501468

RESUMEN

The question of whether there exists a finite mobility in the standard Holstein model with one vibrational mode on each site remains unclear. In this Communication, we approach this problem by employing the hierarchical equation of motion method to simulate model systems where the vibrational modes are dissipative. It is found that, as the friction becomes smaller, the charge carrier mobility increases significantly and a friction-free limit cannot be obtained. The current autocorrelation functions are also calculated for the friction-free Holstein model, and converged results cannot be obtained with an increase in the number of sites. Based on these observations, we conclude that a finite mobility cannot be defined for the standard Holstein model in the parameter regime explored in this work.

2.
J Chem Phys ; 156(6): 064107, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35168335

RESUMEN

We investigate the numerical stability of the hierarchical equations of motion (HEOM) method applied to systems with the Brownian oscillator (BO) and multimode BO (MBO) spectral densities. It is shown that, with the increase in the system-bath coupling strength, the standard HEOM may become unstable, and a simple increase in the truncation depth of the HEOM cannot remove the instability at long times. To solve this problem, we first show that the high-temperature approximation of the HEOM with the BO spectral density is equivalent to the celebrated quantum Fokker-Planck equation (QFPE). By starting from the HEOM, we then derive a new multidimensional phase space differential equation that generalizes the QFPE to arbitrary temperature. It is further shown that the numerical instability can be removed if the new low-temperature QFPE is expanded in a basis set different than the one that leads to the conventional HEOM. The matrix product state method is also employed to propagate the new equation based on the low-temperature QFPE and to resolve the numerical instability problem for an electron transfer model with the MBO spectral density presented in the recent literature.

3.
J Chem Phys ; 156(24): 244102, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35778091

RESUMEN

We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system-bath equilibrium state, we first derive a new set of equations that decouple the imaginary time propagation and the calculation of auxiliary density operators. The new equations, thus, greatly simplify the calculation of the equilibrium correlated initial state that is subsequently used in the real time propagation to obtain the quantum correlation functions. It is also shown that a periodic decomposition of the bath imaginary time correlation function is no longer necessary in the new equations such that different decomposition schemes can be explored. The applicability of the new method is demonstrated in several numerical examples, including the spin-Boson model, the Holstein model, and the double-well model for proton transfer reaction.

4.
J Chem Phys ; 154(19): 194104, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34240893

RESUMEN

We develop new methods to efficiently propagate the hierarchical equations of motion (HEOM) by using the Tucker and hierarchical Tucker (HT) tensors to represent the reduced density operator and auxiliary density operators. We first show that by employing the split operator method, the specific structure of the HEOM allows a simple propagation scheme using the Tucker tensor. When the number of effective modes in the HEOM increases and the Tucker representation becomes intractable, the split operator method is extended to the binary tree structure of the HT representation. It is found that to update the binary tree nodes related to a specific effective mode, we only need to propagate a short matrix product state constructed from these nodes. Numerical results show that by further employing the mode combination technique commonly used in the multi-configuration time-dependent Hartree approaches, the binary tree representation can be applied to study excitation energy transfer dynamics in a fairly large system including over 104 effective modes. The new methods may thus provide a promising tool in simulating quantum dynamics in condensed phases.

5.
Opt Lett ; 45(5): 1272-1275, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108823

RESUMEN

The optical microwave generation scheme with an ultra-stable Fabry-Perot cavity (USC) in a self-injection loop of laser diode (LD) is proposed and experimentally demonstrated for the first time, to the best of our knowledge, in this Letter. Using an USC as the mode selector, an injection light is obtained with coherent and equidistant comb-like modes, which are separated by integer multiples of the free spectral range (FSR) of the USC in frequency domain. After injecting back to the LD, the lasing modes are referenced to these comb-like modes, and the microwaves with frequencies of integer multiples of the USC FSR are obtained from the beating signal of detection photodiode. For the microwaves at frequencies of one FSR and two FSRs, the signal-to-noise ratios are better than 60 dB, and the 3 dB linewidths are below 16 Hz. The phase noises and the frequency stability of the generated microwave are also investigated experimentally.

6.
Opt Lett ; 37(22): 4729-31, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23164894

RESUMEN

We report hertz level relative linewidth distributed feedback diode lasers with external optical feedback from a high finesse F-P cavity, and demonstrate the efficient phase noise suppression and laser linewidth reduction of the optical feedback technique. The laser phase noise is dramatically suppressed throughout the measurement frequency range. Especially at the Fourier frequency of 17 kHz, approximately the linewidth of the F-P reference cavity, the laser phase noise is significantly suppressed by more than 92 dB. Above this Fourier frequency, the noise maintains a white phase noise plateau as low as -124.4 dBc/Hz. The laser's FWHM linewidth is reduced from 7 MHz to 4.4 Hz, and its instantaneous linewidth is 220 mHz in the Lorentzian fitting.

7.
Mol Ecol Resour ; 22(8): 2967-2980, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35757869

RESUMEN

DNA barcoding and metabarcoding have been increasingly used in species delimitation and species diversity assessment, respectively, and the molecular markers used in animals are mainly derived from mitochondrial DNA. It is well known that the phenomenon of multiple mitochondrial haplotypes within the same specimen (hereafter referred to as "mitotype diversity") may have a negative impact on the proper assessment of biodiversity by metabarcoding. However, few studies have focused on the incidence of this phenomenon and its effects on metabarcoding results using different sample preparation strategies, such as mock community construction using pooled high-throughput sequencing (HTS) data, DNA-pooling and Tissue-pooling. In this study, we investigated mitotype diversity and its influence on metabarcoding based on 398 specimens from 66 species of Insecta and 82 specimens from 16 species of Arachnida by HTS of the mitochondrial cox1 gene fragment. The results revealed that mitotype diversity was common in the studied taxa and significantly increased the number of operational taxonomic units (OTUs) using the three sample preparation strategies. The results also showed that the bioinformatics pipeline based on authentic amplicon sequence variants was more reliable than the pipeline based on OTUs. Regarding the sample preparation strategies of DNA-pooling and Tissue-pooling commonly used in metabarcoding, our results revealed that their results of metabarcoding were quite similar, and the Tissue-pooling strategy was therefore preferred because of its simplicity. Our study calls for additional attention to the interference of mitotype diversity on the results of DNA metabarcoding in biodiversity assessment.


Asunto(s)
Arácnidos , Código de Barras del ADN Taxonómico , Animales , Biodiversidad , Código de Barras del ADN Taxonómico/métodos , ADN Mitocondrial/genética , Insectos/genética
8.
Open Biol ; 12(9): 220108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36167086

RESUMEN

In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.


Asunto(s)
Drosophila melanogaster , Complejo IV de Transporte de Electrones , Animales , ADN Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/genética , Femenino , Histonas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Agua
9.
Opt Lett ; 36(1): 34-6, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21209678

RESUMEN

We present a extended-cavity diode laser (ECDL) with kilohertz linewidth by optical feedback from a monolithic folded Fabry-Perot cavity (MFC). In our experiments, an MFC replaces the retroreflecting mirror in the traditional ECDL configuration. Beat-note measurements between this MFC-ECDL and a narrow-linewidth reference laser are performed and demonstrate that the linewidth of this MFC-ECDL is about 6.8 kHz. Phase locking of this MFC-ECDL to the reference laser is achieved with a unity gain as small as 10.2 kHz.

10.
Appl Opt ; 50(26): 5080-4, 2011 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21946988

RESUMEN

A general analytical form of the round trip phase shift in grating feedback diode lasers is proposed. Using the new form, it is obvious that the round trip phase shift can be independent of rotation angle in first order approximation when only one restriction condition is met. We call this the quasi synchronous tuning (QST) condition. In the QST region, a considerably large mode hopping free tuning range can be obtained. An adjustment structure with only one freedom is needed to accurately find and locate the quasi synchronous pivot, which is not strictly confined on the grating surface and its extension. It means that the external cavity diode lasers design can be easier and the laser can be more stable and reliable.

11.
Rev Sci Instrum ; 92(5): 054702, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243348

RESUMEN

A transportable fountain clock with high reliability is important for high-precision time-frequency measurements. Because of its relatively small cold atoms' collision frequency shift and ease of attaining high quantum state preparation efficiency, the rubidium atomic fountain clock has an indicated higher stability and reliability. This paper reports the design and operation of a transportable rubidium atomic fountain clock developed by the Shanghai Institute of Optical and Fine Mechanics, Chinese Academy of Science. After being transported more than 1000 km from Shanghai to the Changping Campus of the National Institute of Metrology, China, the optical platform and other hardware of the fountain clock did not need to be adjusted. The rubidium fountain clock maintained a stability of 4.0 × 10-13τ1/2, reaching 5.0 × 10-16 at 300 000 s. After transportation, the rubidium fountain clock and a cesium fountain clock (NIM5) were operated together against the reference frequency of a hydrogen maser. In three separate operating periods, over a total of nearly three months, the average frequency repeatability of the rubidium fountain was less than 3.8 × 10-15.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA