Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Anal Chem ; 95(16): 6664-6671, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036832

RESUMEN

Various physiological activities and metabolic reactions of cells need to be carried out under the corresponding pH environment. Intracellular GSH as an acid tripeptide and an important reducing substance also plays an important role in maintaining cellular acid-base balance and redox balance. Therefore, developing a method to monitor pH and GSH and their changes in cells is necessary. Herein, we developed a novel turn-on fluorescent silicon nanoparticles (SiNPs) using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as the silicon source and dithiothreitol as the reducing agent via a one-pot hydrothermal method. It was worth mentioning that the fluorescence intensity of the SiNPs increased along with the acidity increase, making the SiNPs have excellent pH and GSH sensing capability. Furthermore, the pH and GSH sensing performance of the SiNPs in the cell was verified by confocal imaging and flow cytometry experiment. Based on the above, the prepared SiNPs had the potential to be used as an intracellular pH and GSH multimode fluorescent sensing platform and exhibited the ability to distinguish between normal cells and cancer cells.


Asunto(s)
Nanopartículas , Silicio , Silicio/química , Nanopartículas/química , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno
2.
Mikrochim Acta ; 187(4): 228, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170469

RESUMEN

A carbon dots-embedded epitope imprinted polymer (C-MIP) was fabricated for targeted fluorescence imaging of cervical cancer by specifically recognizing the epidermal growth factor receptor (EGFR). The core-shell C-MIP was prepared by a reverse microemulsion polymerization method. This method used silica nanoparticles embedded with carbon dots as carriers, acrylamide as the main functional monomer, and N-terminal nonapeptides of EGFR modified by palmitic acid as templates. A series of characterizations (transmission electron microscope, dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, zeta potential, and energy dispersive X-ray spectroscopy) prove the successful synthesis of C-MIP. The fluorescence of C-MIP is quenched by the epitopes of EGFR due to the specific recognition of epitopes of EGFR through their imprinted cavities (analytical excitation/emission wavelengths, 540 nm/610 nm). The linear range of fluorescence quenching is 2.0 to 15.0 µg mL-1 and the determination limit is 0.73 µg mL-1. The targeted imaging capabilities of C-MIP are demonstrated through in vitro and in vivo experiments. The laser confocal imaging results indicate that HeLa cells (over-expression EGFR) incubated with C-MIP show stronger fluorescence than that of MCF-7 cells (low-expression EGFR), revealing that C-MIP can target tumor cells overexpressing EGFR. The results of imaging experiments in tumor-bearing mice exhibit that C-MIP has a better imaging effect than C-NIP, which further proves the targeted imaging ability of C-MIP in vivo. Graphical abstract An oriented epitope imprinted polymer embedded with carbon dots was prepared for the determination of the epitopes of epidermal growth factor receptor and targeted fluorescence imaging of cervical cancer.


Asunto(s)
Carbono/química , Receptores ErbB/análisis , Impresión Molecular , Imagen Óptica , Polímeros/química , Puntos Cuánticos/química , Neoplasias del Cuello Uterino/diagnóstico por imagen , Carbono/farmacología , Supervivencia Celular/efectos de los fármacos , Femenino , Células HeLa , Humanos , Células MCF-7 , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
3.
Anal Chem ; 91(20): 12696-12703, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31532634

RESUMEN

Nanocarriers with both targeting ability and stable loading of drugs can more effectively deliver drugs to precise tumor sites for therapeutic effects. Accordingly, we have rationally designed fluorescent molecularly imprinted polymer nanoparticles (FMIPs), which use N-terminal epitope of P32 membrane protein as the primary template and doxorubicin (DOX) as the secondary template. The DOX imprinted cavity can stably carry the drug and the epitope-imprinted cavity allows FMIPs to actively recognize the P32-positive 4T1 cancer cells. The targeted therapeutic effect of DOX-loaded FMIPs (FMIPs@DOX) is investigated in vitro and in vivo. The FMIPs@DOX only causes apoptosis in 4T1 cancer cells compared to C8161 cells (expressing low level of P32). In addition, highly effective inhibition of 4T1 malignant breast tumors using FMIPs@DOX is achieved in the model of tumor-bearing mice. Importantly, the antitumor effect achieved by intravenous injection of FMIPs@DOX is almost identical to that by intratumoral injection. Furthermore, the FMIPs can serve as a targeted fluorescence imaging agent due to the high specificity of the epitope-imprinted cavity and the stable fluorescence of the embedded silicon nanoparticles. These results demonstrate the effectiveness of the FMIPs for active targeted drug delivery and imaging. Furthermore, the FMIPs provide a direction for drug-loaded nanocarrier.


Asunto(s)
Portadores de Fármacos/química , Epítopos/química , Proteínas de la Membrana/metabolismo , Nanopartículas/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/metabolismo , Epítopos/inmunología , Femenino , Colorantes Fluorescentes/química , Humanos , Proteínas de la Membrana/inmunología , Ratones , Microscopía Confocal , Impresión Molecular , Nanopartículas/metabolismo , Imagen Óptica , Silicio/química , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mikrochim Acta ; 185(3): 173, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29594524

RESUMEN

The authors describe a composite consisting of silicon nanoparticles that were first coated with SiO2 and then with a molecularly imprinted polymer (SiNP@SiO2@MIP). The MIP was generated by dual epitope imprinting such that it can recognize cytochrome c (Cyt c). The MIP on the NPs was prepared from the functional monomer zinc(II) acrylate (ZnA), the crosslinker ethylene glycol dimethacrylate and the initiator 2,2'-azoisobutyronitrile. Dual epitope templates for Cyt c included (a) a C-terminal nonapeptide (AYLKKATNE), and (b) an N-terminal nonapeptide (GDVEKGKKI). The chelation between Zn(II) of ZnA and the amino groups or hydroxy groups of the template nonapeptides warrants good recognition and capture of Cyt c. The fluorescence originating from SiNPs has excitation/emission peaks at 360/480 nm and is quenched by Cyt c in the 0.50-40.0 µM concentration range. The correlation coefficient for the calibration plot of the imprinted NPs is 0.9937. The detection limit is 0.32 ± 0.01 µM, the precisions of six replicate detections at levels of 0.5, 20 and 40 µM Cyt c are 3.2, 2.7 and 2.8%, respectively, and the imprinting factor is 2.43. Compared to single epitope template imprinting, dual epitope imprinting results in improved selectivity. The imprinted nanoparticles can discriminate Cyt c even if one amino acid is mismatched. The method was applied to the determination of Cyt c in spiked diluted human serum and gave recoveries between 94.0 and 107.5%. Graphical Abstract A fluorescent material of the architecture silicon nanoparticle@SiO2@molecularly imprinted polymer (SiNP@SiO2@MIP) was fabricated by dual epitope imprinting and a metal-chelating method. The chelation between Zn(II) of the functional monomer zinc(II) acrylate and the amino groups or hydroxy groups of template warrants that the material recognizes and captures cytochrome c well, and this results in fluorescence quenching.


Asunto(s)
Resinas Acrílicas/química , Citocromos c/sangre , Nanopartículas/química , Silicio/química , Animales , Bovinos , Citocromos c/química , Epítopos , Humanos , Límite de Detección , Impresión Molecular/métodos , Dióxido de Silicio/química , Espectrometría de Fluorescencia/métodos
5.
Anal Chem ; 89(21): 11286-11292, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29035039

RESUMEN

Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T1-weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r1 reached 4.25 mM-1 s-1. On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.

6.
Anal Chem ; 88(23): 11631-11638, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27797177

RESUMEN

Silicon nanoparticles (SiNPs) have been reported to be synthesized by microwave-assisted methods under high pressure. However, there is still a lack of knowledge about the synthesis of SiNPs via microwave-assisted methods under normal pressure. Here we developed a new, facile, one-pot microwave-assisted method for the synthesis SiNPs (∼4.2 nm) with excellent water solubility under normal pressure by employing glycerol as the solvent. Furthermore, glycerol might be responsible for the photoluminescence quantum yield (PLQY) value up to 47% for the resultant SiNPs. The use of organic solvent could afford less nanoparticle surface defects compared with those prepared in aqueous solution, thus improving the fluorescent efficiency. The as-prepared SiNPs simultaneously featured bright blue-green fluorescence, long lifetime (∼12.8 ns), obvious up-conversion luminescence originating from two-photon absorption, superbly strong photostability, and favorable low toxicity. As a satisfactory probe, the as-synthesized SiNPs were successfully applied in fluorescence imaging of human cervical carcinoma cell lines (HeLa) and zebrafish.


Asunto(s)
Fluorescencia , Microondas , Nanopartículas/química , Imagen Óptica , Silicio/química , Agua/química , Animales , Células HeLa , Humanos , Pez Cebra
7.
Luminescence ; 29(8): 1059-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24788557

RESUMEN

Mn(2+)-doped CdTe quantum dots (QDs) were synthesized directly via a facile surface doping strategy in aqueous solution. The best optical property emerged when the added amount of Mn(2+) was 5% compared to Cd(2+) in the CdTe nanoparticles and the reaction temperature was 60 °C. The fluorescence and magnetic properties of the QDs were studied. The as-prepared Mn(2+)-doped CdTe QDs have high quantum yield (48.13%) and a narrow distribution with an average diameter of 3.7 nm. The utility of biological imaging was also studied. Depending on the high quantum yield, cells in culture were illuminated and made more distinct from each other compared to results obtained with normal QDs. They also have a prominent longitudinal relaxivity value (r1= 4.2 mM(-1) s(-1)), which could indicate that the Mn(2+)-doped CdTe QDs can be used as a potential multimodal agent for fluorescence and magnetic resonance imaging.


Asunto(s)
Cadmio/química , Luminiscencia , Manganeso/química , Imagen Multimodal/métodos , Puntos Cuánticos/química , Telurio/química , Técnicas de Química Sintética , Humanos , Células MCF-7 , Imagen por Resonancia Magnética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente/métodos , Solubilidad , Espectrometría por Rayos X , Temperatura
8.
Talanta ; 278: 126432, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38917547

RESUMEN

Given the threat to human health posed by the abuse of tetracycline (TC), the development of a portable, on-site methods for highly sensitive and rapid TC detection is crucial. In this work, we initially synthesized europium-doped silicon nanoparticles (SiEuNPs) through a facile one-pot microwave-assisted method. Due to its blue-red dual fluorescence emission (465 nm/627 nm), which was respectively attributed to the silicon nanoparticles and Eu3+, SiEuNPs were designed as a ratiometric fluorescent sensor for TC detection. For the dual-signal reverse response mechanism: TC quenched the blue emission from silicon nanoparticles through inner filter effect (IFE), and enhanced the red emission through "antenna effect" (AE) between TC and Eu3+, the nanoprobe was able to detect TC within a range of 0.2-10 µM with a limit of detection (LOD) of 10.7 nM. Notably, the equilibrium detection time was only 1 min, achieving rapid TC detection. Furthermore, TC was also measured in real samples (tap water, milk and honey) with recoveries ranging from 95.7 % to 117.0 %. More importantly, a portable smartphone-assisted on-site detection platform was developed, enabling real-time qualitative identification and semi-quantitative analysis of TC based on fluorescence color changes. This work not only provided a novel doped silicon nanoparticles strategy, but also constructed a ratiometric sensing platform with dual-signal reverse response for intuitive and real-time TC detection.

9.
J Sep Sci ; 36(20): 3449-56, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23956076

RESUMEN

Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples.


Asunto(s)
Proteínas del Huevo/aislamiento & purificación , Huevos/análisis , Muramidasa/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida/métodos , Adsorción , Animales , Pollos , Proteínas del Huevo/química , Impresión Molecular , Muramidasa/química , Polímeros/síntesis química , Extracción en Fase Sólida/instrumentación
10.
Front Immunol ; 14: 1165576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153571

RESUMEN

Chimeric antigen receptor-T (CAR-T) cell therapy based on functional immune cell transfer is showing a booming situation. However, complex manufacturing processes, high costs, and disappointing results in the treatment of solid tumors have limited its use. Encouragingly, it has facilitated the development of new strategies that fuse immunology, cell biology, and biomaterials to overcome these obstacles. In recent years, CAR-T engineering assisted by properly designed biomaterials has improved therapeutic efficacy and reduced side effects, providing a sustainable strategy for improving cancer immunotherapy. At the same time, the low cost and diversity of biomaterials also offer the possibility of industrial production and commercialization. Here, we summarize the role of biomaterials as gene delivery vehicles in the generation of CAR-T cells and highlight the advantages of in-situ construction in vivo. Then, we focused on how biomaterials can be combined with CAR-T cells to better enable synergistic immunotherapy in the treatment of solid tumors. Finally, we describe biomaterials' potential challenges and prospects in CAR-T therapy. This review aims to provide a detailed overview of biomaterial-based CAR-T tumor immunotherapy to help investigators reference and customize biomaterials for CAR-T therapy to improve the efficacy of immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Materiales Biocompatibles , Inmunoterapia/métodos , Linfocitos T
11.
ACS Appl Mater Interfaces ; 15(21): 25898-25908, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37191997

RESUMEN

The heat tolerance of tumor cells induced by heat shock proteins (HSPs) is the major factor that seriously hinders further application of PTT, as it can lead to tumor inflammation, invasion, and even recurrence. Therefore, new strategies to inhibit HSPs expression are essential to improve the antitumor efficacy of PTT. Here, we prepared a novel nanoparticle inhibitor by synthesizing molecularly imprinted polymers with a high imprinting factor (3.1) on the Prussian Blue surface (PB@MIP) for combined tumor starvation and photothermal therapy. Owing to using hexokinase (HK) epitopes as the template, the imprinted polymers could inhibit the catalytic activity of HK to interfere with glucose metabolism by specifically recognizing its active sites and then achieve starvation therapy by restricting ATP supply. Meanwhile, MIP-mediated starvation downregulated the ATP-dependent expression of HSPs and then sensitized tumors to hyperthermia, ultimately improving the therapeutic effect of PTT. As the inhibitory effect of PB@MIP on HK activity, more than 99% of the mice tumors were eliminated by starvation therapy and enhanced PTT.


Asunto(s)
Hipertermia Inducida , Impresión Molecular , Nanopartículas , Neoplasias , Animales , Ratones , Polímeros Impresos Molecularmente , Terapia Fototérmica , Hexoquinasa , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Adenosina Trifosfato
12.
ACS Appl Mater Interfaces ; 15(26): 31139-31149, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37353471

RESUMEN

Antimetabolites targeting thymidylate synthase (TS), such as 5-fluorouracil and capecitabine, have been widely used in tumor therapy in the past decades. Here, we present a strategy to construct mitochondria-targeted antimetabolic therapeutic nanomedicines based on fluorescent molecularly imprinted polymers (FMIP), and the nanomedicine was denoted as Mito-FMIP. Mito-FMIP, synthesized using fluorescent dye-doped silica as the carrier and amino acid sequence containing the active center of TS as the template peptide, could specifically recognize and bind to the active site of TS, thus inhibiting the catalytic activity of TS, and therefore hindering subsequent DNA biosynthesis, ultimately inhibiting tumor growth. The imprinting factor of FMIP reached 2.9, and the modification of CTPB endowed Mito-FMIP with the ability to target mitochondria. In vitro experiments demonstrated that Mito-FMIP was able to efficiently aggregate in mitochondria and inhibit CT26 cell proliferation by 59.9%. The results of flow cytometric analysis showed that the relative mean fluorescence intensity of Mito-FMIP accumulated in the mitochondria was 3.4-fold that of FMIP. In vivo experiments showed that the tumor volume of the Mito-FMIP-treated group was only one third of that of the untreated group. In addition, Mito-FMIP exibited the maximum emission wavelength at 682 nm, which allowed it to be used for fluorescence imaging of tumors. Taken together, this study provides a new strategy for the construction of nanomedicines with antimetabolic functions based on molecularly imprinted polymers.


Asunto(s)
Impresión Molecular , Neoplasias , Humanos , Polímeros Impresos Molecularmente , Timidilato Sintasa , Polímeros/química , Fluorouracilo , Inhibidores Enzimáticos , Impresión Molecular/métodos
13.
Talanta ; 259: 124506, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027934

RESUMEN

In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.


Asunto(s)
Tianfenicol , Peroxidasas , Peroxidasa , Agua , Colorimetría , Catálisis
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 1): 120450, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653847

RESUMEN

Transferrin-functionalized silicon nanoparticles (Trf-SiNPs) were fabricated and utilized for targeted fluorescence imaging in tumor cells. Silicon nanoparticles (SiNPs) was firstly synthesized by microwave irradiation method, and then coupled with transferrin in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The structural informations of Trf-SiNPs were measured by transmission electron microscope and Fourier transform infrared spectrometer. The optical properties of Trf-SiNPs were characterized by ultraviolet absorption spectrum, fluorescence emission spectrum, fluorescence quantum yield, fluorescence lifetime, photo-stability, and so on. MTT assay evidenced the low toxicity of Trf-SiNPs. Finally, Trf-SiNPs were successfully applied in HeLa cells and HepG2 cells for targeted fluorescence imaging under single-photon excitation and two-photon excitation.


Asunto(s)
Nanopartículas , Silicio , Células HeLa , Humanos , Nanopartículas/toxicidad , Imagen Óptica , Transferrina
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121196, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390755

RESUMEN

The proposition of ratiometric detection mode has demonstrated great superiority in improving analysis accuracy by forming self-calibration. Herein, the novel dual-reverse-signal ratiometric fluorescence detection for malachite green (MG) was first achieved based on synergistic effect of fluorescence resonance energy transfer (FRET) and inner filter effect (IFE). The ratiometric fluorescence probe (B-RCDs) was self-assembled via electrostatic attraction between blue-emission carbon dots (BCDs) and red-emission carbon dots (RCDs), followed with FRET effect from BCDs to RCDs and exhibited dual-emission at 450 nm and 627 nm. In the presence of MG, the IFE effect between MG and RCDs quenched the fluorescence at 627 nm and restored the fluorescence at 450 nm, sending out two reverse signals along with an obvious color change from pink to purple (302 nm UV lamp). This ratiometric method not only simplified the preparation process, but also improved the detection sensitivity, showing a low limit of detection (LOD) of 41.8 nM, which exhibited superiority than that of single-signal RCDs (157.3 nM). This method held a rapid response of 10 min and represented satisfactory recoveries (99.14%-109.08%) in real water samples, revealing it was a promising candidate in the fast, sensitive and practical detection of MG. Moreover, the design of synergistic effect supplied a new perspective for the development of ratiometric sensing in the future.


Asunto(s)
Puntos Cuánticos , Carbono , Colorantes Fluorescentes , Colorantes de Rosanilina
16.
Biosens Bioelectron ; 196: 113718, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673481

RESUMEN

Molecularly imprinted polymer nanozyme (MIL-101(Co,Fe)@MIP) with bimetallic active sites and high-efficiency peroxidase-like (POD-like) activity were synthesized for the ratiometric fluorescence and colorimetric dual-mode detection of vanillin with high selectivity and sensitivity. Compared with the monometallic nanozyme, the POD-like activity of bimetallic nanozyme was greatly enhanced by changing the electronic structure and surface structure. Ratiometric fluorescence and colorimetric dual-mode detection of vanillin in aqueous solution was realized by vanillin entering specific imprinted cavities and blocking the molecular channels on the surface of MIL-101(Co,Fe)@MIP and the dual-mode visual detection was also realized. The limits of detection were as low as 104 nM and 198 nM, respectively. The method proposed in this paper was applied to the real samples of ice cream and candy. And the recoveries were between 93.3% and 105.5%, which also reached a satisfactory degree. The further detection of dexamethasone and prednisone, two drugs belonging to glucocorticoid, proved that the nanozyme analysis method based on MIL-101(Co,Fe)@MIP could be developed into a sensing platform.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Colorimetría , Peroxidasa , Peroxidasas
17.
ACS Appl Mater Interfaces ; 14(1): 417-427, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978427

RESUMEN

The application of drug delivery system (DDS) has achieved breakthroughs in many aspects, especially in the field of tumor treatment. In this work, polyethylene glycol (PEG)-modified hollow mesoporous manganese dioxide (HMnO2@PEG) nanoparticles were used to load the anti-tumor drug bleomycin (BLM). When the DDS reached the tumor site, HMnO2@PEG was degraded and reduced to Mn2+ by the overexpression of glutathione in the tumor microenvironment, and the drug was released simultaneously. BLM coordinated with Mn2+ in situ, thereby greatly improving the therapeutic activity of BLM. The results of in vivo and in vitro treatment experiments showed that the DDS had excellent responsive therapeutic activation ability. In addition, Mn2+ exhibited strong paramagnetism and was used for T1-weighted magnetic resonance imaging in vivo. Furthermore, this therapeutic mode of responsively releasing drugs and activating in situ effectively attenuated pulmonary fibrosis initiated by BLM. In short, this DDS could help in avoiding the side effects of drugs.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Materiales Biocompatibles/química , Bleomicina/farmacología , Sistemas de Liberación de Medicamentos , Glutatión/química , Animales , Antibióticos Antineoplásicos/química , Materiales Biocompatibles/farmacología , Bleomicina/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Ensayo de Materiales , Ratones , Ratones Desnudos , Óxidos/química , Óxidos/farmacología , Tamaño de la Partícula , Microambiente Tumoral/efectos de los fármacos
18.
Chemistry ; 17(5): 1696-704, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21268172

RESUMEN

The main objective of this study was to develop a new methodology for the preparation of a protein (antigen) that is a molecularly imprinted polymer (MIP, an artificial antibody) modified onto the surface of a silica skeleton in which the resulting stationary phase is thermosensitive. The silica monolithic skeleton with vinyl groups was synthesized in a stainless-steel column by using a mild one-step sol-gel process with two types of precursor: methyltrimethoxysilane (MTMS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS). Subsequently, three types of the thermosensitive protein MIP were anchored onto the surface of the silica skeleton to prepare the MIP monoliths, which were systematically investigated for back pressure and separation ability at different temperatures to establish good imprinting conditions. Under the optimized imprinting conditions, the chromatographic behavior of the thermosensitive MIP monolith exhibited strong retention ability for the lysozyme template (target antigen) in relation to the nonimprinting monolith (NIP monolith). The imprinting factor (IF) for lysozyme reached 3.48 at 20 °C. Moreover, this new type of artificial antibody displayed favorable binding characteristics for lysozyme over competitive proteins and was further evaluated to selectively separate lysozyme in a real sample by using an on-line method. The run-to-run and column-to-column repeatability measurements of the thermosensitive MIP monoliths were also satisfactory.


Asunto(s)
Antígenos/química , Metacrilatos/química , Proteínas/química , Silanos/química , Cromatografía Líquida de Alta Presión/métodos , Microscopía Electrónica de Rastreo , Impresión Molecular , Porosidad , Unión Proteica , Sensación Térmica
19.
Anal Bioanal Chem ; 399(10): 3375-85, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21359578

RESUMEN

A new approach is reported on the use of poly(N-isopropylacrylamide) (PNIPAM)-coated molecularly imprinted beads (coated MIP beads) for controlling the release of protein. The coated MIP beads were composed of double layers, an internal thermosensitive lysozyme-imprinted layer, and an external PNIPAM layer. The coated MIP beads were prepared by two-step surface-initiated living-radical polymerization (SIP). In this systemic study, the coated MIP beads had good selectivity to the template protein (lysozyme) and temperature stimulus-responsive behavior, both of which were superior to those of MIP beads having a layer of thermosensitive lysozyme-imprinted polymer only. Using the coated MIP beads, reference proteins and the template lysozyme could be released separately at 38 °C and at 23 °C. The corresponding coated non-imprinted beads (coated NIP beads) did not have such double thermosensitive "gates" with specific selectivity for a particular protein. The proposed smart controlled imprinted system for protein is attractive for chemical carriers, drug-delivery system, and sensors.


Asunto(s)
Impresión Molecular/métodos , Muramidasa/química , Muramidasa/aislamiento & purificación , Impresión Molecular/instrumentación , Polimerizacion , Polímeros/química , Unión Proteica , Temperatura
20.
J Nanosci Nanotechnol ; 11(5): 4039-45, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21780403

RESUMEN

ZnCdS quantum dots have been successfully prepared at room temperature in aqueous solution with sodium hexametaphosphate as stabilizer and thioacetamide as the source of S. The photoluminescence (PL) spectra and UV-Vis absorption spectra of the ZnCdS quantum dots were determined on the basis of the initial Cd/Zn mole ratio (Cd/Zn = 8/0, 7/1, 6/2, 5/3, 4/4, 3/5, 2/6, 1/7 and 0/8) and the concentration of thioacetamide. The emission peaks first showed a red shift and then a blue shift with the increasing initial Zn concentration, which provided the evidence of formation of CdS/ZnCdS core/shell and ZnCdS alloyed quantum dots. The ZnCdS quantum dots were compared with CdS (ZnS) quantum dots doped with Zn2+ (Cd2+). The samples have also been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA