Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gene Med ; 26(1): e3584, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37605934

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a pathological subtype with a high mortality, and the development of inhibitors in the ubiquitin-proteasome system (UPS) component could be a novel therapeutic tool. METHODS: Triple-negative breast cancer data were obtained from The Cancer Genome Atlas (TCGA), and subtype analysis was performed by consistent clustering analysis to identify molecular subtypes of TNBC according to UPS characteristics. Differential analysis, COX and least absolute shrinkage and selection operator (LASSO) COX regression analyses were performed to select genes associated with overall survival in TNBC. The final prognostic model (UPS score) was determined using the LASSO COX model. The model performance was assessed using receiver operating characteristic (ROC) curves and survival curves. In addition, the results of the UPS score on analyzing the abundance of immune cell infiltration and immunotherapy were explored. Finally, we developed a nomogram for TNBC survival prediction. RESULTS: Two UPS subtypes (UPSMS1 and UPSMS2) showing significant survival differences were classified. COX regression analysis on differentially expressed genes in UPSMS1 and UPSMS2 filtered five genes that affected overall survival. Based on the regression coefficients and expression data of the five genes, we built a prognostic assessment system (UPS score). The UPS score showed consistent prognostic and therapeutic guidance values. Finally, the ROC curve of the nomogram and UPS score showed the highest predictive efficacy compared with traditional clinical prognostic indicators. CONCLUSION: The UPS score represented a promising prognostic tool to predict overall survival and immune status and guide personalized treatment selection in TNBC patients, and this study may provide a more practical alternative for clinical monitoring and management of TNBC.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Neoplasias de la Mama Triple Negativas , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Citoplasma , Inmunoterapia , Ubiquitinas
2.
J Virol ; 97(10): e0074723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37712706

RESUMEN

IMPORTANCE: Respiratory syncytial virus (RSV) matrix (M) protein is indispensable for virion assembly and release. It is localized to the nucleus during early infection to perturb host transcription. However, the function of RSV M protein in other cellular activities remains poorly understood. In this study, several interferon response-associated host factors, including RACK1, were identified by proteomic analysis as RSV M interactors. Knockdown of RACK1 attenuates RSV-restricted IFN signaling leading to enhanced host defense against RSV infection, unraveling a role of M protein in antagonizing IFN response via association with RACK1. Our study uncovers a previously unrecognized mechanism of immune evasion by RSV M protein and identifies RACK1 as a novel host factor recruited by RSV, highlighting RACK1 as a potential new target for RSV therapeutics development.


Asunto(s)
Receptores de Cinasa C Activada , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas de la Matriz Viral , Humanos , Interferones , Proteínas de Neoplasias/genética , Proteínas , Proteómica , Receptores de Cinasa C Activada/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Proteínas de la Matriz Viral/metabolismo
3.
Nat Mater ; 22(11): 1311-1316, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592028

RESUMEN

Quantum light emitters capable of generating single photons with circular polarization and non-classical statistics could enable non-reciprocal single-photon devices and deterministic spin-photon interfaces for quantum networks. To date, the emission of such chiral quantum light relies on the application of intense external magnetic fields, electrical/optical injection of spin-polarized carriers/excitons or coupling with complex photonic metastructures. Here we report the creation of free-space chiral quantum light emitters via the nanoindentation of monolayer WSe2/NiPS3 heterostructures at zero external magnetic field. These quantum light emitters emit with a high degree of circular polarization (0.89) and single-photon purity (95%), independent of pump laser polarization. Scanning diamond nitrogen-vacancy microscopy and temperature-dependent magneto-photoluminescence studies reveal that the chiral quantum light emission arises from magnetic proximity interactions between localized excitons in the WSe2 monolayer and the out-of-plane magnetization of defects in the antiferromagnetic order of NiPS3, both of which are co-localized by strain fields associated with the nanoscale indentations.

4.
Photochem Photobiol Sci ; 23(6): 1051-1065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684635

RESUMEN

As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteína Smad4 , Humanos , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de la radiación , Células HaCaT , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/citología , Estrés Oxidativo/efectos de la radiación , Proteína Smad4/metabolismo , Rayos Ultravioleta
5.
Nano Lett ; 23(23): 11006-11012, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038967

RESUMEN

Interlayer excitons (IXs) formed at the interface of van der Waals materials possess various novel properties. In parallel development, strain engineering has emerged as an effective means for creating 2D quantum emitters. Exploring the intersection of these two exciting areas, we use MoS2/WSe2 heterostructure as a model system and demonstrate how strain, defects, and layering can be utilized to create defect-bound IXs capable of bright, robust, and tunable quantum light emission in the technologically important near-infrared spectral range. Our work presents defect-bound IXs as a promising platform for pushing the performance of 2D quantum emitters beyond their current limitations.

6.
Cell Tissue Res ; 393(2): 265-279, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37247031

RESUMEN

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.


Asunto(s)
Osteogénesis , Factores de Transcripción , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Histona Acetiltransferasas/metabolismo , Osteoblastos , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Ratones
7.
PLoS Comput Biol ; 17(2): e1008696, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33561121

RESUMEN

Hepatocellular carcinoma (HCC) is a significant health problem worldwide with poor prognosis. Drug repositioning represents a profitable strategy to accelerate drug discovery in the treatment of HCC. In this study, we developed a new approach for predicting therapeutic drugs for HCC based on tissue-specific pathways and identified three newly predicted drugs that are likely to be therapeutic drugs for the treatment of HCC. We validated these predicted drugs by analyzing their overlapping drug indications reported in PubMed literature. By using the cancer cell line data in the database, we constructed a Connectivity Map (CMap) profile similarity analysis and KEGG enrichment analysis on their related genes. By experimental validation, we found securinine and ajmaline significantly inhibited cell viability of HCC cells and induced apoptosis. Among them, securinine has lower toxicity to normal liver cell line, which is worthy of further research. Our results suggested that the proposed approach was effective and accurate for discovering novel therapeutic options for HCC. This method also could be used to indicate unmarked drug-disease associations in the Comparative Toxicogenomics Database. Meanwhile, our method could also be applied to predict the potential drugs for other types of tumors by changing the database.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/fisiopatología , Biología Computacional/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/fisiopatología , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Bases de Datos Factuales , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Hígado/metabolismo , ARN Mensajero/metabolismo , Toxicogenética , Transcriptoma
8.
J Cell Physiol ; 236(9): 6559-6570, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33634483

RESUMEN

Acute liver injury (ALI) is a rapid pathological process that may cause severe liver disease and may even be life-threatening. During ALI, the function of males absent on the first (MOF) has not yet been elucidated. In this study, we unveiled the expression pattern of MOF during carbon tetrachloride (CCl4 )-induced ALI and role of MOF in the regulation of liver regeneration. In the process of ALI, MOF is significantly overexpressed in the liver injury area. Knockdown of Mof attenuated CCl4 -induced ALI, and promoted liver cell proliferation, hepatic stellate cell activation and aggregation to the injured area, and liver fibrosis. Simultaneously, overexpression of Mof aggravated liver dysfunction caused by ALI. By directly binding to the promoter, MOF suppressed the transcriptional activation of Igf1. Knockdown of Mof promotes the expression of Igf1 and activates the Insulin-like growth factor 1 signaling pathway in the liver. Through this pathway, Knockdown of Mof reduces CCl4 -induced ALI and promotes liver regeneration. Our results provide the first demonstration for MOF contributing to ALI. Further understanding of the role of MOF in ALI may lead to new therapeutic strategies for ALI.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Hígado/lesiones , Hígado/metabolismo , Activación Transcripcional/genética , Enfermedad Aguda , Adenoviridae/metabolismo , Animales , Tetracloruro de Carbono , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Imidazoles/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/genética , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
10.
Cereb Cortex ; 28(9): 3309-3321, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968688

RESUMEN

Long-term memory formation has been proven to require gene expression and new protein synthesis. MicroRNAs (miRNAs), as an endogenous small non-coding RNAs, inhibit the expression of their mRNA targets, through which involve in new memory formation. In this study, elevated miR-181a levels were found to be responsible for hippocampal contextual fear memory consolidation. Using a luciferase reporter assay, we indicated that miR-181a targets 2 upstream molecules of mTOR pathway, namely, PRKAA1 and REDD1. Upregulated miR-181a can downregulate the PRKAA1 and REDD1 protein levels and promote mTOR activity to facilitate hippocampal fear memory consolidation. These results indicate that miR-181a is involved in hippocampal contextual fear memory by activating the mTOR signaling pathway. This work provides a novel evidence for the role of miRNAs in memory formation and demonstrates the implication of mTOR signaling pathway in miRNA processing in the adult brain.


Asunto(s)
Regulación de la Expresión Génica/genética , Memoria/fisiología , MicroARNs/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Animales , Miedo/fisiología , Ratones , Ratones Endogámicos C57BL
11.
Mol Cell ; 44(5): 770-84, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152480

RESUMEN

Both H4K16 acetylation and H3K4 trimethylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here, we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 trimethylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial cells disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metilación , Mutación
12.
Cell Physiol Biochem ; 47(5): 2159-2169, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975939

RESUMEN

BACKGROUND/AIMS: Histone acetylation has been demonstrated to be associated with inflammation response. Histone acetyltransferase (HAT) Mof, specifically acetylating lysine 16 of histone H4 (H4K16), has been reported to regulate T cell differentiation. In addition, it has been suggested that acetylation of H4K16 is associated with the inflammatory response. We evaluated the role and potential mechanism of Mof in the development of experimental colitis. METHODS: We used Mof conditional knockout mice to study the role of Mof in dextran sulfate sodium (DSS)-induced colitis and detected the differential expression of genes due to Mof deficiency involved in the inflammatory response, particularly the Th17 signaling pathway, by western blotting, quantitative PCR and RNA sequencing (RNA-seq). RESULTS: A significant elevation of Mof was observed in colonic tissues of mice with DSS-induced colitis. Mof deficiency alleviated the severity of DSS- induced colitis in mice. We found that Th17 signaling pathway associated genes, including Il17a, Il22, RORγt, RORα, Stat3, TGF-ß 1, and Il6, were downregulated in colon tissues with Mof deficiency. RNA-seq data analysis suggested that 68 genes were related to inflammatory response processing and 47 genes were downregulated in Mof defective colon tissues. CONCLUSION: Our study demonstrated that HAT Mof is involved in the development of colitis, and the lack of Mof ameliorates DSS-induced colitis in mice.


Asunto(s)
Colitis/enzimología , Sulfato de Dextran/toxicidad , Histona Acetiltransferasas/metabolismo , Transducción de Señal , Células Th17/metabolismo , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Histona Acetiltransferasas/genética , Ratones , Ratones Noqueados , Células Th17/patología
13.
Sensors (Basel) ; 18(6)2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29843438

RESUMEN

In estimating the two-dimensional (2D) direction-of-arrival (DOA) using a coprime planar array, the main issues are the high complexity of spectral peak search and the limited degree of freedom imposed by the number of sensors. In this paper, we present an algorithm based on the matrix completion theory in coprime planar array that reduces the computational complexity and obtains a high degree of freedom. The algorithm first analyzes the covariance matrix of received signals to estimate the covariance matrix of a virtual uniform rectangular array, which has the same aperture as the coprime planar array. Matrix completion theory is then applied to estimate the missing elements of the virtual array covariance matrix. Finally, a closed-form DOA solution is obtained using the unitary estimation signal parameters via rotational invariance techniques (Unitary-ESPRIT). Simulation results show that the proposed algorithm has a high degree of freedom, enabling the estimation of more signal DOAs than the number of sensors. The proposed algorithm has reduced computational complexity because the spectral peak search is replaced by Unitary-ESPRIT, but attains similarly high levels accuracy to those of the 2D multiple signal classification algorithm.

14.
Mol Cell ; 36(2): 290-301, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19854137

RESUMEN

In mammals, MYST family histone acetyltransferase MOF plays important roles in transcription activation by acetylating histone H4 on K16, a prevalent mark associated with chromatin decondensation, and transcription factor p53 on K120, which is important for activation of proapoptotic genes. However, little is known about MOF regulation in higher eukaryotes. Here, we report that the acetyltransferase activity of MOF is tightly regulated in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Importantly, we demonstrate that while the two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating nonhistone substrate p53. We further demonstrate that MOF-MSL1v1 is specifically required for optimal transcription activation of p53 target genes both in vitro and in vivo. Our results support a model that these two MOF complexes regulate distinct stages of transcription activation in cooperation with other histone modifying activities.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Mamíferos/metabolismo , Complejos Multiproteicos/metabolismo , Activación Transcripcional/genética , Acetilación , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Modelos Genéticos , Complejos Multiproteicos/química , Nucleosomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Especificidad por Sustrato , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
15.
Immunology ; 148(2): 174-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26868141

RESUMEN

Macrophages and dendritic cells (DCs) in murine spleen are essential for the maintenance of immune homeostasis by elimination of blood-borne foreign particles and organisms. It has been reported that splenic DCs, especially CD8α(+) CD103(+) DCs, are responsible for tolerance to apoptosis-associated antigens. However, the molecular mechanism by which these DCs maintain immune homeostasis by blood-borne apoptotic cell clearance remains elusive. Here, we found that the CCL22/CCR4 axis played a critical role in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) DCs. The present results revealed that systemic administration of apoptotic cells rapidly induced a large number of CCL22 and CCR4(+) regulatory T (Treg) cells in the spleen of C57BL/6J mice. Further study demonstrated that CD8α(+) CD103(+) DCs dominantly produce much higher CCL22 than CD8α(+) CD103(-) DCs. Moreover, the transient deletion of CD8α(+) CD103(+) DCs caused a decrease in CCL22 levels together with CCR4(+) Treg cell percentage. Subsequently, the levels of some pro-inflammatory cytokines, such as interleukin-17 and interferon-γ in the spleen with the absence of CD8α(+) CD103(+) DCs increased in response to the administration of apoptotic cells. Hence, intravenous injection of apoptotic cells induced a subsequent increase in CCL22 expression and CCR4(+) Treg cells, which contribute to the maintenance of immune homeostasis at least partially by splenic CD8α(+) CD103(+) DCs.


Asunto(s)
Apoptosis/inmunología , Quimiocina CCL22/metabolismo , Células Dendríticas/inmunología , Receptores CCR4/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD/metabolismo , Antígenos CD8/metabolismo , Células Cultivadas , Homeostasis/inmunología , Cadenas alfa de Integrinas/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Bazo/patología
16.
Parasitology ; 143(5): 639-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26928609

RESUMEN

Autophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.


Asunto(s)
Autofagia/fisiología , Toxoplasma/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Autofagia/efectos de los fármacos , Línea Celular , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/parasitología , Prepucio/citología , Humanos , Masculino , Organismos Modificados Genéticamente/crecimiento & desarrollo , Organismos Modificados Genéticamente/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo
17.
Antimicrob Agents Chemother ; 59(2): 1048-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25451048

RESUMEN

Mycoplasma pneumoniae is a major pathogen causing community-acquired pneumoniae (CAP), which is generally treated with macrolides. In recent years, however, although macrolide-resistant M. pneumoniae has been reported frequently, particularly in China, very little is known about the prevalence of macrolide-resistant M. pneumoniae infection in adults. In this study, we survey the macrolide-resistant M. pneumoniae in adults in Zhejiang province and characterize the mechanisms of resistance to macrolide. Six hundred fifty throat swab samples were collected from adult patients with CAP from January 2012 to August 2014. These samples were assayed by nested PCR and then cultivated for M. pneumoniae. All isolates were sequenced to determine the mutation in domain V of the 23S rRNA gene. The activities of 10 antibiotics against macrolide-resistant M. pneumoniae isolates were also investigated in vitro. Moreover, restriction fragment length polymorphism (RFLP) analysis of the amplified P1 gene was used to type 50 resistant strains. One hundred percent (71/71) of M. pneumoniae strains isolated from adults with CAP were resistant to erythromycin (MIC=128 to >256 µg/ml), clarithromycin (MIC=128 to >256 µg/ml), and azithromycin (MIC=32 to >64 µg/ml). Furthermore, all macrolide-resistant M. pneumoniae strains identified had an A2063G mutation in domain V of the 23S rRNA gene. Forty-six resistant strains (92.0%) were classified into type I strain on the basis of P1 gene PCR-RFLP analysis. According to these findings, it is suggested that macrolide-resistant M. pneumoniae infection is very prevalence among adults in Zhejiang province. Thus, there is necessary to perform the epidemiological monitoring of macrolide-resistant M. pneumoniae in the future.


Asunto(s)
Antibacterianos/farmacología , Macrólidos/farmacología , Mycoplasma pneumoniae/efectos de los fármacos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Claritromicina/farmacología , Farmacorresistencia Bacteriana , Eritromicina/farmacología , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidad , Polimorfismo de Longitud del Fragmento de Restricción/genética , ARN Ribosómico 23S/genética , Adulto Joven
18.
Opt Express ; 23(15): 20132-42, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367671

RESUMEN

A lab-on-fiber (LOF) optofluidic platform that provides physiologically relevant microenvironment was developed by integrating a long period grating (LPG) coupled with high order cladding mode to achieve high index sensitivity and a liquid-tight capillary tube assembly as a microfluidic chamber for LPG to mimic physiologically relevant microenvironment. We demonstrate the utility of LOF for in situ monitoring the construction of the [chitosan (CHI)/poly (acrylic acid) (PAA)/gentamicin sulfate (GS)/PAA]n multilayers at monolayer resolution as well as evaluating the rate of GS release at a flow rate of 0.127 mL/min at 37 °C in real time. We reveal that GS is released at a faster rate under the dynamic flow condition than in a static medium. Our findings underscore the importance of conducting drug release studies in physiologically relevant conditions.

19.
J Proteome Res ; 13(12): 6087-95, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25377623

RESUMEN

Lysine succinylation is a new posttranslational modification identified in histone proteins of Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa. However, very little is known about their scope and cellular distribution. Here, using LC-MS/MS to identify parasite peptides enriched by immunopurification with succinyl lysine antibody, we produced the first lysine succinylome in this parasite. Overall, a total of 425 lysine succinylation sites that occurred on 147 succinylated proteins were identified in extracellular Toxoplasma tachyzoites, which is a proliferative stage that results in acute toxoplasmosis. With the bioinformatics analysis, it is shown that these succinylated proteins are evolutionarily conserved and involved in a wide variety of cellular functions such as metabolism and epigenetic gene regulation and exhibit diverse subcellular localizations. Moreover, we defined five types of definitively conserved succinylation site motifs, and the results imply that lysine residue of a polypeptide with lysine on the +3 position and without lysine at the -1 to +2 position is a preferred substrate of lysine succinyltransferase. In conclusion, our findings suggest that lysine succinylation in Toxoplasma involves a diverse array of cellular functions, although the succinylation occurs at a low level.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Succinatos/metabolismo , Toxoplasma/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Cromatografía Liquida , Histonas/genética , Lisina/genética , Datos de Secuencia Molecular , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Toxoplasma/genética
20.
Prostate ; 74(6): 647-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24435928

RESUMEN

BACKGROUND: Approximately 50% of prostate cancer (PCa) patients in Western countries harbor ERG rearrangement with concurrent ERG overexpression. Overexpression of SOX4 has been shown to play important roles in multiple cancers including PCa. However, the link between these two critical genetic aberrations was unclear. METHODS: Fluorescence in situ hybridization and immunohistochemistry were utilized to detect ERG rearrangement and SOX4 expression. Cellular function was evaluated by transwell, wound healing assays, and cell adhesion assay, respectively. Interaction between ERG and SOX4 was arrayed by co-immunoprecipitation, Real-time PCR, Western blot, and siRNA. Direct binding of ERG to the promoter of SOX4, as well as epigenetic modifications of their promoters after TGF-ß1 treatment was monitored by chromatin immunoprecipitation. RESULTS: ERG regulated SOX4 expression via binding to its promoter. Silencing both of them showed duplicate effects on restoring the epithelial characteristics, increasing cellular adhesion and decreasing capacity of cellular migration and invasion. ERG and SOX4 have cooperative roles in TGF-ß1-induced epithelial to mesenchymal transition (EMT) process. In addition, TGF-ß1 stimulation increased levels of chromatin marks associated with active genes (H3K4me3, H416ac), and decreased levels of repressive marks (H3K27me3) at their promoters. 5-aza and TSA treatment changed expressions of ERG and SOX4. Clinically, overexpression of SOX4 is associated with ERG rearrangement status in PCa and ERG+/SOX4+ defined a subset of PCa patients with poor prognosis. CONCLUSION: Our findings define a key role for ERG/SOX4 in the development of a subset of PCa and highlight the clinical importance of identifying molecularly defined tumor subgroups.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Factores de Transcripción SOXC/metabolismo , Transactivadores/metabolismo , Adulto , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Regiones Promotoras Genéticas , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción SOXC/genética , Transactivadores/genética , Regulador Transcripcional ERG , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA