Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 19(1): 473, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914361

RESUMEN

BACKGROUND: Pear (Pyrus spp.) is an economically important temperate fruit tree worldwide. In the past decade, significant progress has been made in pear molecular genetics based on DNA research, but the number of molecular markers is still quite limited, which hardly satisfies the increasing needs of geneticists and breeders. RESULTS: In this study, a total of 156,396 simple sequence repeat (SSR) loci were identified from a genome sequence of Pyrus bretschneideri 'Dangshansuli'. A total of 101,694 pairs of SSR primers were designed from the SSR loci, and 80,415 of the SSR loci were successfully located on 17 linkage groups (LGs). A total of 534 primer pairs were synthesized and preliminarily screened in four pear cultivars, and of these, 332 primer pairs were selected as clear, stable, and polymorphic SSR markers. Eighteen polymorphic SSR markers were randomly selected from the 332 polymorphic SSR markers in order to perform a further analysis of the genetic diversity among 44 pear cultivars. The 14 European pears and their hybrid materials were clustered into one group (European pear group); 29 Asian pear cultivars were clustered into one group (Asian pear group); and the Zangli pear cultivar 'Deqinli' from Yunnan Province, China, was grouped in an independent group, which suggested that the cultivar 'Deqinli' is a distinct and valuable germplasm resource. The population structure analysis partitioned the 44 cultivars into two populations, Pop 1 and Pop 2. Pop 2 was further divided into two subpopulations. Results from the population structure analysis were generally consistent with the results from the UPGMA cluster analysis. CONCLUSIONS: The results of the present study showed that the use of next-generating sequencing to develop SSR markers is fast and effective, and the developed SSR markers can be utilized by researchers and breeders for future pear improvement.


Asunto(s)
Variación Genética , Genoma de Planta , Repeticiones de Microsatélite , Pyrus/genética , China , Mapeo Cromosómico , ADN de Plantas , Ligamiento Genético , Filogenia , Polimorfismo Genético
2.
BMC Genomics ; 19(1): 833, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463521

RESUMEN

BACKGROUND: Chromosomal level reference genomes provide a crucial foundation for genomics research such as genome-wide association studies (GWAS) and whole genome selection. The chromosomal-level sequences of both the European (Pyrus communis) and Chinese (P. bretschneideri) pear genomes have not been published in public databases so far. RESULTS: To anchor the scaffolds of P. bretschneideri 'DangshanSuli' (DS) v1.0 genome into pseudo-chromosomes, two genetic maps (MH and YM maps) were constructed using half sibling populations of Chinese pear crosses, 'Mantianhong' (MTH) × 'Hongxiangsu' (HXS) and 'Yuluxiang' (YLX) × MTH, from 345 and 162 seedlings, respectively, which were prepared for SNP discovery using genotyping-by-sequencing (GBS) technology. The MH and YM maps, each with 17 linkage groups (LGs), were constructed from 2606 and 2489 SNP markers and spanned 1847 and 1668 cM, respectively, with average marker intervals of 0.7. The two maps were further merged with a previously published genetic map (BD) based on the cross 'Bayuehong' (BYH) × 'Dangshansuli' (DS) to build a new integrated MH-YM-BD map. By using 7757 markers located on the integrated MH-YM-BD map, 898 scaffolds (400.57 Mb) of the DS v1.0 assembly were successfully anchored into 17 pseudo-chromosomes, accounting for 78.8% of the assembled genome size. About 88.31% of them (793 scaffolds) were directionally anchored with two or more markers on the pseudo-chromosomes. Furthermore, the errors in each pseudo-chromosome (especially 1, 5, 7 and 11) were manually corrected and pseudo-chromosomes 1, 5 and 7 were extended by adding 19, 12 and 14 scaffolds respectively in the newly constructed DS v1.1 genome. Synteny analyses revealed that the DS v1.1 genome had high collinearity with the apple genome, and the homologous fragments between pseudo-chromosomes were similar to those found in previous studies. Moreover, the red-skin trait of Asian pear was mapped to an identical locus as identified previously. CONCLUSIONS: The accuracy of DS v1.1 genome was improved by using larger mapping populations and merged genetic map. With more than 400 MB anchored to 17 pseudo-chromosomes, the new DS v1.1 genome provides a critical tool that is essential for studies of pear genetics, genomics and molecular breeding.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Genoma de Planta , Genómica/métodos , Pyrus/genética , Evolución Molecular , Ligamiento Genético , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
3.
Hereditas ; 155: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28943832

RESUMEN

BACKGROUND: Pear (Pyrus spp.) is a popular fruit that is commercially cultivated in most temperate regions. In fruits, sugar metabolism and accumulation are important factors for fruit organoleptic quality. Post-harvest ripening is a special feature of 'Red Clapp's Favorite'. RESULTS: In this study, transcriptome sequencing based on the Illumina platform generated 23.8 - 35.8 million unigenes of nine cDNA libraries constructed using RNAs from the 'Red Clapp's Favorite' pear variety with different treatments, in which 2629 new genes were discovered, and 2121 of them were annotated. A total of 2146 DEGs, 3650 DEGs, 1830 DEGs from each comparison were assembled. Moreover, the gene expression patterns of 8 unigenes related to sugar metabolism revealed by qPCR. The main constituents of soluble sugars were fructose and glucose after pear fruit post-harvest ripening, and five unigenes involved in sugar metabolism were discovered. CONCLUSIONS: Our study not only provides a large-scale assessment of transcriptome resources of 'Red Clapp's Favorite' but also lays the foundation for further research into genes correlated with sugar metabolism.


Asunto(s)
Genes de Plantas , Pyrus/genética , Azúcares/metabolismo , Transcriptoma , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Proteínas de Plantas/genética , Pyrus/metabolismo
4.
Hereditas ; 155: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083084

RESUMEN

BACKGROUND: Red-skinned pears are attractive to consumers because of their aesthetic appeal and the antioxidant-associated health benefits provided by the anthocyanins in their red skin. In China, the 'Red Zaosu' (RZS) red bud mutation of the Zaosu (ZS) pear has been used as a parent in Asian pear breeding to generate new cultivars with crispy red fruit and red tender shoots resembling those of the 'Max Red Bartlett' (MRB) pears. RESULTS: In this study, a segregation ratio of 1:1 was observed between plants with red or green shoots in four families with RZS as the only red shoot gene donor parent, suggesting that the red shoot trait of RZS is associated with a dominant gene. Three markers, In1400-1, In1579-1 and In1579-3, were chosen from 22 pairs of indel primers targeting regions in the vicinity of the previously identified red fruit skin locus of MRB and were able to effectively distinguish the eight red shoot plants from the eight green shoot plants. Linkage analysis indicated that the genetic distance between the two marker loci (In1579-1 and In1579-3) and the red shoot locus of RZS were both 1.4 cM, while the genetic distance between the In1400-1 marker and the red shoot locus was 2.1 cM. The physical position of the red locus in RZS should be in the 368.6 kb candidate interval at the bottom of LG4. CONCLUSIONS: The genetic locus responsible for the red tender shoots of RZS was located in the same interval of the red fruit skin gene of MRB, meaning that the bud mutation loci of RZS and MRB may be the same or adjacent to each other, and the red shoot trait and the red fruit skin trait in RZS may be controlled by the same, or a closely linked locus. As a result, breeders could use red shoots as a morphological marker to select for the red-skinned hybrids from RZS families.


Asunto(s)
Frutas/genética , Genes Dominantes , Pigmentación/genética , Hojas de la Planta/genética , Pyrus/genética , Cruzamientos Genéticos , Genes de Plantas , Ligamiento Genético , Fenotipo , Fitomejoramiento
5.
J Exp Bot ; 65(20): 5771-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25129128

RESUMEN

Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this study, we firstly constructed a high-density linkage map of pear using SNPs integrated with SSRs, developed by the rapid and robust technology of restriction-associated DNA sequencing (RADseq). The linkage map consists of 3143 SNP markers and 98 SSRs, 3241 markers in total, spanning 2243.4 cM, with an average marker distance of 0.70 cM. Anchoring SSRs were able to anchor seventeen linkage groups to their corresponding chromosomes. Based on this high-density integrated pear linkage map and two years of fruit phenotyping, a total of 32 potential QTLs for 11 traits, including length of pedicel (LFP), single fruit weight (SFW), soluble solid content (SSC), transverse diameter (TD), vertical diameter (VD), calyx status (CS), flesh colour (FC), juice content (JC), number of seeds (NS), skin colour (SC), and skin smooth (SS), were identified and positioned on the genetic map. Among them, some important fruit-related traits have for the first time been identified, such as calyx status, length of pedicel, and flesh colour, and reliable localization of QTLs were verified repeatable. This high-density linkage map of pear is a worthy reference for mapping important fruit traits, QTL identification, and comparison and combination of different genetic maps.


Asunto(s)
Mapeo Cromosómico/métodos , Frutas/genética , Ligamiento Genético , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Pyrus/genética , Productos Agrícolas , Marcadores Genéticos/genética , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN
6.
Artículo en Zh | MEDLINE | ID: mdl-17960038

RESUMEN

Vacuolated mesophyll protoplasts of Nicotiana rustica L. were electrically fused with evacuolated protoplasts of the same genus (N. tabacum cv. 'Gexin No.1') during a 7-day space flight in the Chinese spacecraft "SZ-4". The initial cell division leading to micro-callus formation took place after landing (Fig.1). Higher plating efficiencies were observed in the flight samples than the control culture, but the frequency of plantlets regeneration reduced by about 20% of the control (Table 1). The hybrid characters were tested by chromosome counting, isozyme analysis and comparison of morphological characteristics (Figs.2-4). About 32% of the regenerates showed hybrid character. Leaf morphological modifications were found in 3 hybrids, i.e., H23, H25 and H27. After backcrossing with N. rustica, alterations in flower color and leaf shape occurred in the somatic hybrid H23 (Fig.5). These results demonstrate that the hybrids formed under microgravity condition could regenerate fertile plants.


Asunto(s)
Fusión Celular/métodos , Electricidad , Nicotiana/citología , Protoplastos/citología , Regeneración/fisiología , Ingravidez , Protoplastos/fisiología , Nicotiana/fisiología
7.
Hortic Res ; 4: 17053, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118994

RESUMEN

Pears with red skin are attractive to consumers and provide additional health benefits. Identification of the gene(s) responsible for skin coloration can benefit cultivar selection and breeding. The use of QTL-seq, a bulked segregant analysis method, can be problematic when heterozygous parents are involved. The present study modified the QTL-seq method by introducing a |Δ(SNP-index)| parameter to improve the accuracy of mapping the red skin trait in a group of highly heterozygous Asian pears. The analyses were based on mixed DNA pools composed of 28 red-skinned and 27 green-skinned pear lines derived from a cross between the 'Mantianhong' and 'Hongxiangsu' red-skinned cultivars. The 'Dangshansuli' cultivar genome was used as reference for sequence alignment. An average single-nucleotide polymorphism (SNP) index was calculated using a sliding window approach (200-kb windows, 20-kb increments). Nine scaffolds within the candidate QTL interval were in the fifth linkage group from 111.9 to 177.1 cM. There was a significant linkage between the insertions/deletions and simple sequence repeat markers designed from the candidate intervals and the red/green skin (R/G) locus, which was in a 582.5-kb candidate interval that contained 81 predicted protein-coding gene models and was composed of two subintervals at the bottom of the fifth chromosome. The ZFRI 130-16, In2130-12 and In2130-16 markers located near the R/G locus could potentially be used to identify the red skin trait in Asian pear populations. This study provides new insights into the genetics controlling the red skin phenotype in this fruit.

8.
Protein J ; 30(3): 194-200, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21409615

RESUMEN

Fruit bagging is a very effective method for study of fruit qualities and anthocyanin synthesis. The characterization of differentially expressed proteins that were isolated from both bagged and normal fruit skin tissue is apparently an essential parameter for understanding the effect of shading on fruit qualities and to understand the mechanism of fruit coloring in Pyrus communis. Proteome maps of both bagged and normal P. communis 'Placer' fruit skin were obtained by performing two-dimensional electrophoresis analysis and compared to assess the extent to which protein distribution differed in pear skin. The comparative analysis showed 38 differentially expressed proteins between the two samples: with three protein spots up-regulated and 35 down-regulated in the bagged fruit. Differentially expressed protein spots were subjected to matrix-assisted laser desorption ionization time of flight (MALDI-TOF) analysis and the data compared to that of known proteins to deduce their possible functions. Of these, 21 protein spots were identified and classified into functional classes. These identified proteins were mainly involved in photosynthesis, signal transduction, energy pathway, protein folding and assembly, and carbohydrate and acidity metabolisms, and were under-expressed in bagged fruit skins. This work provides a first characterization of the proteome changes in response to fruit bagging treatment in red pears.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pyrus/genética , Electroforesis en Gel Bidimensional , Frutas/química , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Datos de Secuencia Molecular , Pigmentación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pyrus/química , Pyrus/crecimiento & desarrollo , Pyrus/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA