Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pediatr Res ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710942

RESUMEN

BACKGROUND: This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS: The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS: LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS: These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT: Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.

2.
Am J Pathol ; 191(1): 204-215, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130045

RESUMEN

Metabolism plays a pivotal role in the formation of the lymphatic vasculature. Pyruvate kinase M2 (PKM2) is typically a metabolic marker of proliferating cells and maintains the growth of vascular endothelial cells. In this study, the potential status of PKM2 in lymphatic endothelial cells and the pathogenesis of lymphatic malformations (LMs) was investigated. The glycolysis index, including glucose uptake, ATP, and lactate production, stayed at a relatively high level in human dermal lymphatic endothelial cells (HDLECs) compared with human umbilical vein endothelial cells, whereas the inhibition of PKM2 by shikonin or PKM2 knockdown significantly suppressed glycolysis, migration, tubular formation, and invasion of HDLECs. Moreover, compared with lymphatic vessels in healthy skin, lymphatic vessels of LMs expressed PKM2 highly, and this expression correlated with infection of LMs. Meanwhile, the overexpression of PKM2 in HDLECs strengthened the proliferation, migration, tubular formation, and invasion of HDLECs. The findings from further experiments in a rat LM model support that targeting PKM2 by shikonin significantly impedes the progression of LMs, even in an infected LM rat model. Taken together, these results indicate that PKM2 plays a pivotal role in the activation of LECs and promotes the progression of LMs, whereas the inhibition of PKM2 can effectively suppress the pathogenesis of LM lesions in the rat model.


Asunto(s)
Células Endoteliales/enzimología , Anomalías Linfáticas/enzimología , Vasos Linfáticos/anomalías , Piruvato Quinasa/metabolismo , Animales , Femenino , Glucólisis/fisiología , Humanos , Vasos Linfáticos/enzimología , Ratas , Ratas Wistar
3.
ChemistryOpen ; 11(6): e202200106, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35723424

RESUMEN

Homocysteine (Hcy) is a sulfur-containing α-amino acid that differs by one methylene (CH2 ) subunit from homologous cysteine (Cys). Elevated levels of Hcy are diagnostic markers of cardiovascular disease and other medical conditions. We present a new CuII -salicylidene glycinato complex 1 for the selective fluorometric detection of Hcy in water. In the presence of this analyte, the non-fluorescent copper-complex demetallates and disassembles into its building blocks. This process liberates a 3-chloro-5-sulfosalicylaldehyde signaling unit and is accompanied by a 51-fold turn-on fluorescence at 485 nm (λex =350 nm). Out of twenty proteinogenic amino acids, only histidine (12-fold turn-on fluorescence) and Cys (8-fold turn-on fluorescence) trigger some disassembly of probe 1. In comparison with important pioneering work on the detection of biothiols, this study strikingly demonstrates that structural modifications of chelate core structures steer substrate selectivity of metal-based probes. Importantly, probe 1 has proven suitable for the detection of Hcy in artificial urine.


Asunto(s)
Colorantes Fluorescentes , Homocisteína , Aminas , Cisteína/química , Colorantes Fluorescentes/química , Fluorometría , Espectrometría de Fluorescencia
4.
Polym Chem ; 13(32): 4666-4674, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36092984

RESUMEN

Linear-bottlebrush-linear (LBBL) triblock copolymers are emerging systems for topologically-tunable elastic materials. In this paper, a new synthetic methodology is presented to synthesize LBBL polystyrene-block-bottlebrushpolydimethylsiloxane-block-polystyrene (PS-b-bbPDMS-b-PS) triblock copolymer via the "grafting onto" approach where the precursors are individually synthesized through living anionic polymerization and selective coupling reaction. In this two-step approach, polystyrene-block-polymethylvinylsiloxane (PS-b-PMVS) diblock copolymer with a low dispersity couples with another living PS block to form PS-b-PMVS-b-PS triblock copolymer. Secondly, this is followed by grafting of separately prepared monohydride-terminated PDMS chains with controllable grafting density through a hydrosilylation reaction. In addition to fully tunable architectural parameters, this approach permits a quantitative determination of the ratio of diblock and triblock bottlebrush copolymers and consistency between batches, highlighting the feasibility for scaled-up production. These LBBL triblock copolymers self-assemble into soft, low-modulus thermoplastic elastomers, and the precise knowledge of the composition is crucial for correlating microstructure to mechanical properties.

5.
Nat Commun ; 13(1): 5512, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127374

RESUMEN

Soluble α-synuclein aggregates varying in size, structure, and morphology have been closely linked to neuronal death in Parkinson's disease. However, the heterogeneity of different co-existing aggregate species makes it hard to isolate and study their individual toxic properties. Here, we show a reliable non-perturbative method to separate a heterogeneous mixture of protein aggregates by size. We find that aggregates of wild-type α-synuclein smaller than 200 nm in length, formed during an in vitro aggregation reaction, cause inflammation and permeabilization of single-liposome membranes and that larger aggregates are less toxic. Studying soluble aggregates extracted from post-mortem human brains also reveals that these aggregates are similar in size and structure to the smaller aggregates formed in aggregation reactions in the test tube. Furthermore, we find that the soluble aggregates present in Parkinson's disease brains are smaller, largely less than 100 nm, and more inflammatory compared to the larger aggregates present in control brains. This study suggests that the small non-fibrillar α-synuclein aggregates are the critical species driving neuroinflammation and disease progression.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Humanos , Liposomas/metabolismo , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
6.
Opt Express ; 18(7): 6447-54, 2010 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-20389668

RESUMEN

The dark enhancements of diffraction efficiency in single and multiple gratings are investigated theoretically and experimentally in phenanthrenequinone doped poly-(methyl methacrylate) materials. It is demonstrated a possibility to improve holographic characteristics of the material via the enhancement. Nearly 17-fold increment of diffraction efficiency is observed after exposure. The dependences of PQ's concentration on the rate and increment of dark enhancement are achieved quantitatively. And the enhancement in multiplexing is presented as a simple and efficient method to improve response of the material and homogeneity of diffraction efficiency. PQ's diffusion and enhancement process of refractive index modulation are simulated by a diffusion model for describing enhancement dynamics qualitatively and quantitatively. This study provides a significant foundation for the application of dark enhancement in holographic storage.


Asunto(s)
Holografía/métodos , Fotoquímica/métodos , Polímeros/química , Polimetil Metacrilato/química , Simulación por Computador , Difusión , Holografía/instrumentación , Modelos Químicos , Modelos Teóricos , Óptica y Fotónica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA