Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581688

RESUMEN

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Asunto(s)
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiología , Glycine max/genética , Glycine max/crecimiento & desarrollo , Zea mays/fisiología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Flores/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Productos Agrícolas/crecimiento & desarrollo
2.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G80-G92, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38742280

RESUMEN

Acute pancreatitis (AP) is an acute inflammatory reaction of the pancreatic tissue, which involves auto-digestion, edema, hemorrhage, and necrosis. AP can be categorized into mild, moderately severe, and severe AP, with severe pancreatitis also referred to as acute necrotizing pancreatitis (ANP). ANP is characterized by the accumulation of necrotic material in the peritoneal cavity. This can result in intestinal injury. However, the mechanism of ANP-associated intestinal injury remains unclear. We established an ANP-associated intestinal injury rat model (ANP-IR model) by injecting pancreatitis-associated ascites fluid (PAAF) and necrotic pancreatic tissue at various proportions into the triangular area formed by the left renal artery and ureter. The feasibility of the ANP-IR model was verified by comparing the similar changes in indicators of intestinal inflammation and barrier function between the two rat models. In addition, we detected changes in apoptosis levels and YAP protein expression in the ileal tissues of rats in each group and validated them in vitro in rat epithelial crypt cells (IEC-6) to further explore the potential injury mechanisms of ANP-associated intestinal injury. We also collected clinical data from patients with ANP to validate the effects of PAAF and pancreatic necrosis on intestinal injury. Our findings offer a theoretical basis for restricting the buildup of peritoneal necrosis in individuals with ANP, thus promoting the restoration of intestinal function and enhancing treatment efficacy. The use of the ANP-IR model in further studies can help us better understand the mechanism and treatment of ANP-associated intestinal injury.NEW & NOTEWORTHY We constructed a rat model of acute necrotizing pancreatitis-associated intestinal injury and verified its feasibility. In addition, we identified the mechanism by which necrotic pancreatic tissue and pancreatitis-associated ascites fluid (PAAF) cause intestinal injury through the HIPPO signaling pathway.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Pancreatitis Aguda Necrotizante , Ratas Sprague-Dawley , Proteínas Señalizadoras YAP , Animales , Pancreatitis Aguda Necrotizante/patología , Pancreatitis Aguda Necrotizante/metabolismo , Pancreatitis Aguda Necrotizante/complicaciones , Ratas , Masculino , Proteínas Señalizadoras YAP/metabolismo , Humanos , Páncreas/patología , Páncreas/metabolismo , Ascitis/metabolismo , Ascitis/patología , Línea Celular , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología
3.
Anal Chem ; 96(21): 8689-8695, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748889

RESUMEN

Tumor microenvironment-responsive phototheranostic agents are highly sought after for their ability to improve diagnostic accuracy and treatment specificity. Here, we introduce a novel single-molecule probe, POZ-NO, which is activated by nitric oxide (NO) and weak acidity, enabling dual-mode imaging and photothermal therapy (PTT) of tumors. In acidic environments with elevated NO levels, POZ-NO exhibits a distinctive ratiometric fluorescence signal shift from the red to near-infrared, accompanied by a 700 nm photoacoustic signal. Additionally, POZ-NO demonstrated potent photothermal effects upon NO and acidity activation, achieving an impressive conversion efficiency of 74.3% under 735 nm laser irradiation. In vivo studies confirm POZ-NO's ability to accurately image tumors through ratiometric fluorescence and photoacoustic modes while selectively treating tumors with PTT.


Asunto(s)
Óxido Nítrico , Técnicas Fotoacústicas , Terapia Fototérmica , Microambiente Tumoral , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animales , Humanos , Ratones , Imagen Óptica , Concentración de Iones de Hidrógeno , Nanomedicina Teranóstica , Ratones Endogámicos BALB C , Femenino , Colorantes Fluorescentes/química , Fluorescencia
4.
BMC Cancer ; 24(1): 698, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849760

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS: Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS: We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS: These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Tetraspanina 30 , Macrófagos Asociados a Tumores , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transición Epitelial-Mesenquimal/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Tetraspanina 30/metabolismo , Tetraspanina 30/genética , Metabolismo de los Lípidos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Pronóstico , Reprogramación Celular/genética
5.
Brain Behav Immun ; 119: 394-407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608743

RESUMEN

Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Disbiosis , Microbioma Gastrointestinal , Hipocampo , Toxoplasma , Toxoplasmosis , Animales , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/microbiología , Toxoplasmosis/metabolismo , Toxoplasmosis/complicaciones , Disbiosis/metabolismo , Humanos , Masculino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal/métodos , Butiratos/metabolismo , Femenino , Cognición/fisiología
6.
Org Biomol Chem ; 22(18): 3725-3731, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647088

RESUMEN

For the first time, three acceptor-donor-acceptor (A-D-A)-type boranil fluorescent dyes, CSU-BF-R (R = H, CH3, and OCH3), featuring phenothiazine as the donor, were designed and synthesized. CSU-BF-R exhibited remarkable photophysical characteristics, including large Stokes shifts (>150 nm), high fluorescence quantum yields (up to 40%), long-wavelength emissions, and strong red solid-state fluorescence. Moreover, these CSU-BF-R fluorescent dyes were demonstrated to function as highly selective and sensitive ratiometric fluorescent probes for detecting hypochlorous acid (HClO). The preliminary biological applications of CSU-BF-OCH3 for sensing intracellular HClO in living cells and zebrafish were demonstrated. Therefore, CSU-BF-R possess the potential to further explore the physiological and pathological functions associated with HClO and provide valuable insights into the design of high-performance A-D-A-type fluorescent dyes.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes , Ácido Hipocloroso , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Ácido Hipocloroso/análisis , Ácido Hipocloroso/química , Humanos , Compuestos de Anilina/química , Compuestos de Anilina/síntesis química , Estructura Molecular , Imagen Óptica
7.
Eur Arch Otorhinolaryngol ; 281(3): 1243-1252, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37747602

RESUMEN

PURPOSE: To study the efficacy predictors of endolymphatic sac decompression (ESD) in Meniere's disease (MD), and to establish and verify the prediction model of vertigo after ESD in patients with MD. METHODS: The retrospective cohort data of 56 patients with unilateral MD who underwent ESD surgery were recorded. A stepwise regression method was used to select optimal modeling variables, and we established a logistic regression model with the outcome of vertigo after ESD. The bootstrap method was used for internal validation. RESULTS: Potential predictors included sex, age, follow-up duration, disease course, attack duration, frequency of attack, pure-tone threshold average (PTA) of the patient's speech frequency, audiogram type, glycerin test results, MD subtype, and 10-year atherosclerotic cardiovascular disease risk classification. Using the stepwise regression method, we found that the optimal modeling variables were the audiogram type and PTA of the patient's speech frequency. The prediction model based on these two variables exhibited good discrimination [area under the receiver operating characteristic curve: 0.72 (95% confidence interval: 0.57-0.86)] and acceptable calibration (Brier score 0.21). CONCLUSION: The present model based on the audiogram type and PTA of the patient's speech frequency was found to be useful in guidance of ESD efficacy prediction and surgery selection.


Asunto(s)
Saco Endolinfático , Enfermedad de Meniere , Humanos , Enfermedad de Meniere/complicaciones , Enfermedad de Meniere/diagnóstico , Enfermedad de Meniere/cirugía , Saco Endolinfático/cirugía , Estudios Retrospectivos , Descompresión Quirúrgica/efectos adversos , Descompresión Quirúrgica/métodos , Vértigo
8.
J Sci Food Agric ; 104(7): 3865-3882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217341

RESUMEN

BACKGROUND: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.) soybean (Glycine Max L. Merr.) relay strip intercropping (MS) An experiment was carried out aiming to examine the effects of nitrogen (N) applications and interspecific distances on root system and soil environment in MS. The two N application levels, referred to as no N application (NN) and conventional N application (CN), were paired with different interspecific distances: 30, 45 and 60 cm (MS30, MS45 and MS60) and 100 cm of monoculture maize and soybean (MM/SS100). RESULTS: The results demonstrated that MS45 increased the distribution of soil aggregates (> 2 mm) near the crop roots and maize soil nutrients status, which increased by 20.3% and 15.6%. Meanwhile, MS reduced soil bulk density, increased soil porosity and improved soil oxygen content. Optimization of the soil environment facilitated root growth. The MS45 achieved a better result on root distribution and morphology than the other configuration and also increased land productivity. CONCLUSION: Relay intercropped soybean with maize in interspecific row spacing of 45 cm, improved soil physicochemical environment, reshaped root architecture and optimized root spatial distribution of crops to achieve greater land productivity. © 2024 Society of Chemical Industry.


Asunto(s)
Agricultura , Suelo , Suelo/química , Agricultura/métodos , Glycine max , Zea mays , Nitrógeno/análisis
9.
J Sci Food Agric ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980001

RESUMEN

BACKGROUND: Relay intercropping of maize and soybean can improve land productivity. However, the mechanism behind N2O emissions in this practice remains unclear. A two-factor randomized block field trial was conducted to reveal the mechanism of N2O emissions in a full additive maize-soybean relay intercropping. Factor A was three cropping systems - that is, monoculture maize (Zea mays L.), monoculture soybean (Glycine max L. Merr.) and maize-soybean relay intercropping. Factor B was different N supply, containing no N, reduced N and conventional N. Differences in N2O emissions, soil properties, rhizosphere bacterial communities and yield advantage were evaluated. RESULTS: The land equivalent ratio was 1.55-2.44, and the cumulative N2O emission ( C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ ) was notably lower by 60.2% in intercropping than in monoculture, respectively. Reduced N declined C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ without penalty on the yield advantages. The relay intercropping shifted soil properties - for example, soil organic matter, total N, NH 4 + $$ {\mathrm{NH}}_4^{+} $$ and protease activity - and improved the soil microorganism community - for example, Proteobacteria and Acidobacteria. Intercropping reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by directly suppressing nirS- and amoA-regulated N2O generation during soil N cycling, or nirS- and amoA-mediated soil properties shifted to reduce C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ indirectly. Reduced N directly reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by decreasing soil N content and reducing soil microorganism activities to alleviate N2O produced in soil N cycling. CONCLUSION: Conducting a full additive maize-soybean relay intercropping with reduced nitrogen supply provides a way to alleviate N2O emissions without the penalty on the yield advantage by changing rhizosphere bacterial communities and soil N cycling. © 2024 Society of Chemical Industry.

10.
Anal Chem ; 95(50): 18619-18628, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38054238

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) can progress to cirrhosis and liver cancer if left untreated. Therefore, it is of great importance to develop useful tools for the noninvasive and accurate diagnosis of NAFLD. Increased microenvironmental viscosity was considered as a biomarker of NAFLD, but the occurrence of increased viscosity in other liver diseases highly reduces the diagnosis accuracy of NAFLD by a single detection of viscosity. Hence, it is very necessary to seek a second biomarker of NAFLD. It has been innovatively proposed that the overexpressed heme oxygenase-1 enzyme in NAFLD would produce abnormally high concentrations of CO in hepatocytes and that CO could serve as a potential biomarker. In this work, we screened nine lactam Changsha dyes (HCO-1-HCO-9) with delicate structures to obtain near-infrared (NIR), metal-free, and "dual-locked" fluorescent probes for the simultaneous detection of CO and viscosity. Changsha dyes with a 2-pyridinyl hydrazone substituent could sense CO, and the 5-position substituents on the 2-pyridinyl moiety had a great electron effect on the reaction rate. The double bond in these dyes served as the sensing group for viscosity. Probe HCO-9 was utilized for precise diagnosis of NAFLD by simultaneous detection of CO and viscosity. Upon reacting with CO in a high-viscosity microenvironment, strong fluorescence at 745 nm of probe HCO-9 was turned on with NIR excitation at 700 nm. Probe HCO-9 was proven to be an effective tool for imaging CO and viscosity. Due to the advantages of NIR absorption and low toxicity, probe HCO-9 was successfully applied to image NAFLD in a mouse model.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Colorantes Fluorescentes/química , Monóxido de Carbono , Viscosidad , Biomarcadores
11.
BMC Plant Biol ; 23(1): 438, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726682

RESUMEN

Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), monoculture peanut (Arachis hypogaea L.) (MP), maize-soybean substitutive relay intercropping (IMS), and maize-peanut substitutive strip intercropping (IMP). N input included without N (N0) and N addition (N1). Results showed that maize's leaf area index was 31.0% and 34.6% higher in IMS and IMP than in MM. The specific leaf weight and chlorophyll a (chl a) of maize were notably higher by 8.0% and 18.8% in IMS, 3.1%, and 18.6% in IMP compared with MM. Finally, N addition resulted in a higher thousand kernels weight of maize in IMS and IMP than that in MM. More dry matter accumulated and partitioned to the grain, maize's averaged partial land equivalent ratio and the net effect were 0.76 and 2.75 t ha-1 in IMS, 0.78 and 2.83 t ha-1 in IMP. The leaf area index and specific leaf weight of intercropped soybean were 16.8% and 26% higher than MS. Although soybean suffers from shade during coexistence, recovered growth strengthens leaf functional traits and increases dry matter accumulation. The averaged partial land equivalent ratio and the net effect of intercropped soybean were 0.76 and 0.47 t ha-1. The leaf area index and specific leaf weight of peanuts in IMP were 69.1% and 14.4% lower than in the MP. The chlorophyll a and chlorophyll b of peanut in MP were 17.0% and 24.4% higher than in IMP. A less dry matter was partitioned to the grain for intercropped peanut. The averaged pLER and NE of intercropped peanuts were 0.26 and -0.55 t ha-1. In conclusion, the strengthened leaf functional traits promote dry matter accumulation, maize-soybean relay intercropping obtained a win-win yield advantage, and maize-peanut strip intercropping achieved a trade-off yield advantage.


Asunto(s)
Fabaceae , Zea mays , Clorofila A , Verduras , Glycine max , Arachis , Hojas de la Planta , Grano Comestible
12.
BMC Med ; 21(1): 328, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635232

RESUMEN

BACKGROUND: Deoxynivalenol (DON), one of the most prevalent mycotoxins, has been found to cause fetal growth retardation in animals. However, limited evidence exists regarding its effects on pregnant women. METHODS: Maternal urinary concentration of total DON (tDON) and free DON (fDON) in the second trimester was measured using liquid chromatography with tandem mass spectrometry. Provisional daily intake (PDI) of DON was calculated based on tDON concentration. Linear and logistic regression models were used to evaluate the association between DON exposure levels and birth weight, birth length, and the risk of small for gestational age (SGA). RESULTS: Among 1538 subjects, the median concentrations of tDON and fDON were 12.1 ng/mL and 5.1 ng/mL, respectively. The PDI values revealed that the median DON intake was 0.7 µg/kg bw, and 35.9% of the total population exceeded the provisional maximum tolerable daily intake (PMTDI) of 1 µg/kg bw. Compared with the lowest tertile, birth weight decreased by 81.11 g (95% CI: -127.00, -35.23) for tDON (P-trend < 0.001) and 63.02 g (95% CI: -108.72, -17.32) for fDON (P-trend = 0.004) in the highest tertile. Each unit increase in Ln-tDON and Ln-fDON was also inversely associated with birth weight. Furthermore, compared to those who did not exceed PMTDI, pregnant women whose PDI exceeded PMTDI had lower birth weight (ß = -79.79 g; 95% CI: -119.09, -40.49) and birth length (ß = -0.21 cm; 95% CI: -0.34, -0.07), and a higher risk of SGA (OR = 1.48; 95% CI: 1.02, 2.15) in their offspring. Similar associations with birth weight, birth length, and SGA were found when comparing the highest tertile of PDI to the lowest tertile (all P-trend < 0.05). CONCLUSIONS: Maternal DON exposure is related to decreased birth weight. Our findings implicate that DON exposure during pregnancy may cause fetal growth faltering, and measures should be taken to reduce DON exposure in pregnant women.


Asunto(s)
Retardo del Crecimiento Fetal , Parto , Femenino , Humanos , Embarazo , Animales , Peso al Nacer , Estudios Prospectivos , China/epidemiología
13.
Small ; 19(7): e2205414, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36504423

RESUMEN

Osteosarcoma (OS) is the most serious bone malignancy, and the survival rate has not significantly improved in the past 40 years. Thus, it is urgent to develop a new strategy for OS treatment. Chemodynamic therapy (CDT) as a novel therapeutic method can destroy cancer cells by converting endogenous hydrogen peroxide (H2 O2 ) into highly toxic hydroxyl radicals (·OH). However, the therapeutic efficacy of CDT is severely limited by the low catalytic efficiency and overexpressed glutathione (GSH). Herein, an excellent nanocatalytic platform is constructed via a simple solvothermal method using F127 as a soft template to form the hollow copper ferrite (HCF) nanoparticle, followed by the coating of polydopamine on the surface and the loading of doxorubicin (DOX). The Fe3+ and Cu2+ released from HCF@polydopamine (HCFP) can deplete GSH through the redox reactions, and then trigger the H2 O2 to generate ·OH by Fenton/Fenton-like reaction, resulting in enhanced CDT efficacy. Impressively, the photothermal effect of HCFP can further enhance the efficiency of CDT and accelerate the release of DOX. Both in vitro and in vivo experiments reveal that the synergistic chemodynamic/photothermal/chemo-therapy exhibits a significantly enhanced anti-OS effect. This work provides a promising strategy for OS treatment.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Cobre , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Peróxido de Hidrógeno , Glutatión , Microambiente Tumoral
14.
Hepatology ; 76(3): 564-575, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35184318

RESUMEN

BACKGROUND AND AIMS: Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS: We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS: Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.


Asunto(s)
Hepatitis Autoinmune , Antígenos CD28/genética , Antígeno CTLA-4/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA , Hepatitis Autoinmune/genética , Humanos , Polimorfismo de Nucleótido Simple
15.
Mol Ecol ; 32(6): 1366-1380, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35712997

RESUMEN

Populus species have long been used as model organisms to study the adaptability of trees and the evolution of sex chromosomes. As a species belonging to the section Populus and limited to tropical areas, the P. qiongdaoensis genome contains important information for tropical poplar studies and protection. Here, we report a chromosome-level genome assembly and annotation of a female P. qiongdaoensis. Gene family clustering, positive selection detection and historical reconstruction of population dynamics revealed the tropical adaptation of P. qiongdaoensis, and showed convergent evolution with another tropical poplar, P. ilicifolia, at the molecular level, especially on some functional genes (e.g., PIF3 and PIL1). In addition, we also identified a ZW sex determination system on chromosome 19 of P. qiongdaoensis, and inferred that it seems to have a similar sex determination mechanism to other poplars, controlled by a type-A cytokinin response regulator (RR) gene. However, comparison and phylogenetic analysis of the sex determination regions confirmed a cryptic sex turnover event in the section Populus, which may be caused by the translocation and duplication of the RR gene driven by Helitron-like transposable elements. Our study provides new insights into the environmental adaptation and sex chromosome evolution of poplars, and emphasizes the importance of using long read sequencing in ecological and evolutionary inferences of plants.


Asunto(s)
Populus , Populus/genética , Filogenia , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Adaptación Fisiológica/genética
16.
Respir Res ; 24(1): 142, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259066

RESUMEN

BACKGROUND: While some lung adenocarcinoma (LUAD) patients benefit long-term from treatment with immune checkpoint inhibitors, the sad reality is that a considerable proportion of patients do not. The classification of the LUAD tumor microenvironment (TME) can be used to conceptually comprehend primary resistance mechanisms. In addition, the most recent research demonstrates that the release of damage-associated molecular pattern (DAMP) in TME by immunogenic cell death (ICD) may contribute to the adaptive immune response. Currently, however, there is no such comprehensive research on this topic in LUAD patients. Therefore, we set out to investigate how to reverse the poor infiltration characteristics of immune cells and boost antitumor immunity by identifying DAMP model. METHODS: In this study, ICD-related DAMP genes were selected to investigate their effects on the prognosis of LUAD. To create a risk signature using the TCGA-LUAD cohort, the univariate COX regression and the least absolute shrinkage and selection operator regression were carried out, and the results were verified in a GEO dataset. Subsequently, the multivariate COX regression was applied to establish a prognostic nomogram. And the ESTIMATE and ssGSEA algorithms were utilized to analyze immune activity and the TIDE algorithm was for responsiveness to immunotherapy. Moreover, clinical tissue samples were used to verify the differential expression of 9 DAMP genes in the signature. RESULTS: We identified two distinct DAMP molecular subtypes, and there are remarkable differences in survival probability between the two subtypes, and patients with higher levels of DAMP-related genes are "hot tumors" with increased immune activity. In addition, 9 DAMP genes were selected as prognostic signature genes, and clinical outcomes and immunotherapy response were better for participants in the low-risk group. Importantly, according to the area under the curve (AUC) value in evaluating the efficacy of immunotherapy, this signature is superior to existing predictors, such as PD-L1 and TIDE. CONCLUSIONS: Our study suggests ICD plays an important part in modeling the TME of LUAD patients. And this signature could be utilized as a reliable predictor to estimate clinical outcomes and predict immunotherapy efficacy among LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Muerte Celular Inmunogénica , Inmunoterapia , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Algoritmos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Pronóstico , Microambiente Tumoral/genética
17.
Environ Sci Technol ; 57(1): 118-127, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36503235

RESUMEN

The common metal-organic framework (MOF) MIL-101(Cr)-NH2 has attracted considerable attention due to its great potential applications in the environmental field. Nevertheless, its behavior and fate in aquatic systems are unknown. This study quantified and visualized the interactions of MIL-101(Cr)-NH2 with the freshwater phytoplanktonic alga Chlamydomonas reinhardtii and its potential trophic transfer to zooplankton. The unicellular alga absorbed and accumulated the MOF by surface attachment, forming agglomerates and eventually cosettling out from water. Bioimaging revealed that MIL-101(Cr)-NH2 was internalized by the algal cells and mainly occurred in the pyrenoid. Without algae in a freshwater system, MIL-101(Cr)-NH2 was ingested by Daphnia magna, showing steadily increasing concentrations approaching 1-9% of dry body weight. Addition of algae substantially suppressed D. magna uptake of MIL-101(Cr)-NH2 by 63.8-97.9%. Such inhibition could be explained by the competitive uptake of MOF by the algae and the inductive effects of algal food on MOF elimination by D. magna. The MOF (≤1 mg/L) ingested by D. magna was centered in the gut regions, whereas large MOF or algae-MOF aggregates were adsorbed onto the carapace and appendages, including the antennae, at 10 mg/L. Overall, the algae were the major targets for MIL-101(Cr)-NH2, with nearly all algal cells settling out at 10 mg/L within 24 h. The possibility of trophic transfer of MIL-101(Cr)-NH2 to D. magna in aquatic systems with algae present was limited due to its low accumulation potential and short retention time in D. magna.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Animales , Estructuras Metalorgánicas/farmacología , Zooplancton , Agua Dulce , Daphnia
18.
Environ Sci Technol ; 57(51): 21550-21557, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085701

RESUMEN

Synthetic antioxidants, including synthetic phenolic antioxidants (SPAs), amine antioxidants (AAs), and organophosphite antioxidants (OPAs), are essential additives for preventing oxidative aging in various industrial and consumer products. Increasing attention has been paid to the environmental contamination caused by these chemicals, but our understanding of synthetic antioxidants is generally limited compared to other emerging contaminants such as plasticizers and flame retardants. Many people spend a significant portion (normally greater than 80%) of their time indoors, meaning that they experience widespread and persistent exposure to indoor contaminants. Thus, this Perspective focuses on the problem of synthetic antioxidants as indoor environmental contaminants. The wide application of antioxidants in commercial products and their demonstrated toxicity make them an important family of indoor contaminants of emerging concern. However, significant knowledge gaps still need to be bridged: novel synthetic antioxidants and their related transformation products need to be identified in indoor environments, different dust sampling strategies should be employed to evaluate human exposure to these contaminants, geographic scope and sampling scope of research on indoor contamination should be broadened, and the partition coefficients of synthetic antioxidants among different media need to be investigated.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Humanos , Antioxidantes , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Fenoles , Monitoreo del Ambiente , Polvo/análisis
19.
Environ Sci Technol ; 57(32): 11704-11717, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515552

RESUMEN

Photoinitiators (PIs) are a family of anthropogenic chemicals used in polymerization systems that generate active substances to initiate polymerization reactions under certain radiations. Although polymerization is considered a green method, its wide application in various commercial products, such as UV-curable inks, paints, and varnishes, has led to ubiquitous environmental issues caused by PIs. In this study, we present an overview of the current knowledge on the environmental occurrence, human exposure, and toxicity of PIs and provide suggestions for future research based on numerous available studies. The residual concentrations of PIs in commercial products, such as food packaging materials, are at microgram per gram levels. The migration of PIs from food packaging materials to foodstuffs has been confirmed by more than 100 reports of food contamination caused by PIs. Furthermore, more than 20 PIs have been detected in water, sediment, sewage sludge, and indoor dust collected from Asia, the United States, and Europe. Human internal exposure was also confirmed by the detection of PIs in serum. In addition, PIs were present in human breast milk, indicating that breastfeeding is an exposure pathway for infants. Among the most available studies, benzophenone is the dominant congener detected in the environment and humans. Toxicity studies of PIs reveal multiple toxic end points, such as carcinogenicity and endocrine-disrupting effects. Future investigations should focus on synergistic/antagonistic toxicity effects caused by PIs coexposure and metabolism/transformation pathways of newly identified PIs. Furthermore, future research should aim to develop "greener" PIs with high efficiency, low migration, and low toxicity.


Asunto(s)
Polvo , Embalaje de Alimentos , Femenino , Humanos , Asia , Benzofenonas/química , Agua
20.
BMC Geriatr ; 23(1): 559, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710168

RESUMEN

BACKGROUND: In the early stages of the coronavirus disease 2019 (COVID-19) outbreak, the most widely recognised symptoms of the disease were fever, cough, shortness of breath, myalgia, and fatigue. However, in addition to these symptoms, COVID-19 can cause systemic symptoms outside the lungs. Older patients with severe COVID-19 often require admission to the intensive care unit (ICU). Acute rectal ulcer bleeding, characterised by painless, profuse haematochezia, caused by solitary or multiple rectal ulcers, is one of the main causes of severe haematochezia in patients with COVID-19 in the ICU. However, recurrent duodenal ulcer bleeding followed by rectal ulcer bleeding has not previously been reported in older patients during ICU treatment for severe COVID-19. CASES PRESENTATION: Herein, we report the case of an 81-year-old woman admitted to the emergency department due to severe COVID-19 and transferred to the ICU 2 days later for treatment. During treatment in the ICU, the patient developed recurrent duodenal ulcer bleeding and underwent endoscopic electrocoagulation haemostasis and gastroduodenal artery embolisation. However, the night after the final haemostatic operation, due to rectal ulcer bleeding, the patient discharged bloody stools intermittently, which was effectively controlled using endoscopic electrocoagulation, topical medication, blood transfusion, and haemostatic drugs. CONCLUSIONS: To the best of our knowledge, this is the first report of duodenal ulcer bleeding followed by rectal ulcer bleeding in an older patient with severe COVID-19 infection. This report creates awareness for clinicians about the multiple and complex gastrointestinal symptoms that may occur during COVID-19 treatment.


Asunto(s)
COVID-19 , Úlcera Duodenal , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Úlcera , Úlcera Duodenal/complicaciones , Úlcera Duodenal/diagnóstico , Úlcera Duodenal/terapia , Tratamiento Farmacológico de COVID-19 , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/terapia , Tos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA