RESUMEN
AIM: To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of a novel, oral glucagon receptor antagonist, LGD-6972, in healthy subjects and subjects with type 2 diabetes (T2DM). METHODS: In the single ascending dose study, LGD-6972 (2-480 mg) was administered to healthy subjects (n = 48) and T2DM subjects (n = 8). In the multiple ascending dose study, healthy subjects (n = 12) received a dose of 15 mg LGD-6972 and T2DM subjects (n = 36) received doses of 5, 10 or 15 mg of LGD-6972 daily for 14 days. RESULTS: LGD-6972 had linear plasma pharmacokinetics consistent with once-daily dosing that was comparable in healthy and T2DM subjects. Dose-dependent decreases in fasting plasma glucose were observed in all groups with a maximum of 3.15 mmol/L (56.8 mg/dL) on day 14 in T2DM subjects. LGD-6972 also reduced plasma glucose in the postprandial state. Dose-dependent increases in fasting plasma glucagon were observed, but glucagon levels decreased and insulin levels increased after an oral glucose load in T2DM subjects. LGD-6972 was well tolerated at the doses tested without dose-related or clinically meaningful changes in clinical laboratory parameters. No subject experienced hypoglycaemia. CONCLUSION: Inhibition of glucagon action by LGD-6972 was associated with decreases in glucose in both healthy and T2DM subjects, the magnitude of which was sufficient to predict improvement in glycaemic control with longer treatment duration in T2DM patients. The safety and pharmacological profile of LGD-6972 after 14 days of dosing supports continued clinical development.
Asunto(s)
Alcanosulfonatos/farmacología , Benzamidas/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/efectos de los fármacos , Receptores de Glucagón/antagonistas & inhibidores , Administración Oral , Adulto , Anciano , Glucemia/metabolismo , Ayuno , Femenino , Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/metabolismo , Voluntarios Sanos , Humanos , Hipoglucemia/inducido químicamente , Masculino , Persona de Mediana Edad , Periodo Posprandial , Adulto JovenRESUMEN
A series of novel AIE-active (aggregation-induced emission) molecules, named SAF-2-TriPE, SAF-3-TriPE, and SAF-4-TriPE, were designed and synthesized through facile reaction procedures. We found that incorporation of the spiro-acridine-fluorene (SAF) group, which is famous for its excellent hole-transporting ability and rigid structure, at different substitution positions on the phenyl ring affected the conjugation lengths of these compounds. Consequently, we have obtained molecules with different emission colors and properties without sacrificing good EL (electroluminescence) characteristics. Accordingly, a device that was based on compound SAF-2-TriPE displayed superior EL characteristics: it emitted green light with ηc, max =10.5â cd A(-1) and ηext, max =4.22 %, whereas a device that was based on compound SAF-3-TriPE emitted blue-green light with ηc, max =3.9â cd A(-1) and ηext, max = 1.71 %. These compounds also displayed different AIE performances: when the fraction of water in the THF solutions of these compounds was increased, we observed a significant improvement in the ΦF of compounds SAF-2-TriPE and SAF-3-TriPE; in contrast, compound SAF-4-TriPE showed an abnormal phenomenon, in that it emitted a strong fluorescence in both pure THF solution and in the aggregated state without a significant change in ΦF . Overall, this systematic study confirmed a relationship between the regioisomerism of the luminophore structure and its AIE activity and the resulting electroluminescent performance in non-doped devices.
RESUMEN
A new polymer, poly[{9,9-di(triphenylamine)fluorene}(9,9-dihexylfluorene)(4-aminophenylcarbazole)] (PFCz) was synthesized and used in a reaction with graphene oxide (GO) containing surface-bonded acyl chloride moieties to give a soluble GO-based polymer material GO-PFCz. A bistable electrical switching effect was observed in an electronic device in which the GO-PFCz film was sandwiched between indium-tin oxide (ITO) and Al electrodes. This device exhibited two accessible conductivity states, that is, a low-conductivity (OFF) state and a high-conductivity (ON) state, and can be switched to the ON state under a negative electrical sweep; it can also be reset to the initial OFF state by a reverse (positive) electrical sweep. The ON state is nonvolatile and can withstand a constant voltage stress of -1 V for 3 h and 10(8) read cycles at -1 V under ambient conditions. The nonvolatile nature of the ON state and the ability to write, read, and erase the electrical states, fulfill the functionality of a rewritable memory. The mechanism associated with the memory effects was elucidated from molecular simulation results and in-situ photoluminescence spectra of the GO-PFCz film under different electrical biases.
RESUMEN
A soluble graphite oxide (GO) axially substituted gallium phthalocyanine (PcGa) hybrid material (GO-PcGa) was for the first time synthesized by the reaction of tBu(4)PcGaCl with GO in anhydrous DMSO at 110 °C in the presence of K(2)CO(3). The formation of a Ga-O bond between PcGa and GO has been confirmed by x-ray photoelectron spectroscopy. In contrast to GO, the D and G bands of GO-PcGa in the Raman spectrum are shifted to the lower wavenumbers by Δν = 11 and 18 cm(-1), respectively. At the same level of concentration of 0.1 g l(-1), GO-PcGa exhibit much larger nonlinear optical extinction coefficients and strong optical limiting performance than GO, tBu(4)PcGaCl and C(60) at both 532 and 1064 nm, implying a remarkable accumulation effect as a result of the covalent link between GO and PcGa. GO-PcGa possesses three main mechanisms for the nonlinear optical response-nonlinear light scattering, two-photon absorption and reverse saturable absorption for the 532 nm pulses and nonlinear light scattering for the 1064 nm pulses. tBu(4)PcGaCl does not make any significant contribution to the optical limiting at 1064 nm, while GO-PcGa has a much greater optical limiting response than GO at this wavelength, this suggesting that the PcGa moiety could certainly play an unknown but important role in the GO-PcGa material system.
RESUMEN
Borane is an excellent electron-accepting species, and its derivatives have been widely used in a variety of fields. However, the use of borane derivatives as host materials in OLEDs has rarely reported because the device performance is generally not satisfactory. In this work, two novel spiro-bipolar hosts with incorporated borane were designed and synthesized. The strategies used in preparing these materials were to increase the spatial separation of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) in the molecules, tune the connecting positions of functional groups, and incorporate specific functional groups with desirable thermal stability. Based on these designs, phosphorescent OLEDs with borane derivatives as hosts and with outstanding device performances were obtained. In particular, devices based on SAF-3-DMB/FIrpic exhibited an external quantum efficiency (EQE) of >25%. More encouragingly, the device was found to have quite a low efficiency roll-off, giving an efficiency of >20% even at a high brightness of 10000 cd/m(2). Furthermore, the EQE of the three-color-based (R + G + B) white OLED employing SAF-3-DMB as a host was also as high as 22.9% with CIE coordinates of (x, y) = (0.40, 0.48). At a brightness of 5000 cd/m(2), there was only a 3% decrease in EQE from its maximum value, implying a very low efficiency roll-off.
RESUMEN
BACKGROUND: Bioanalysis of large molecules can be challenging on LC-MS/MS due to multiply charged and endogenous interferences. While high sensitivity triple quadrupole systems (QqQ) have been commercialized recently, high-resolution MS (HRMS) systems are also available. HRMS provides alternative analysis methods, but more costly and with sensitivity lower than MRM on QqQ. RESULTS: QqQ is generally operated at unit resolution; however, newer systems are able to practically tune to 'high resolution'. Therefore, the advantages of both higher sensitivity of MRM on QqQ and better specificity on HRMS can possibly be combined on a QqQ to meet bioanalysis needs. Glucagon and salmon calcitonin were successfully quantified in high-resolution with fast cycle time on AB Sciex TripleQuad™ 5500. LLOQ (S/N) was increased and interferences reduced. CONCLUSION: For large molecules, the bioanalysis methods developed using high resolution on the QqQ are validated and used in preclinical and clinical studies.
Asunto(s)
Calcitonina/sangre , Glucagón/sangre , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas/instrumentaciónRESUMEN
A novel ladder-type donor (IDTT) is developed by substituting the two outward thiophenes of the IDT donor with two thieno[3,2-b]thiophenes. The polymer derived from this donor possesses longer effective conjugation and better planarity, which improves electron delocalization along the polymer backbone and charge mobility. The polymer solar cell device using PIDTT-DFBT shows a high power conversion efficiency of 7.03% with a large open-circuit voltage of 0.95 V without using any additives or post-solvent/thermal annealing processes.