Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 193(2): 1016-1035, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37440715

RESUMEN

Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.


Asunto(s)
Fragaria , Rubus , Rubus/genética , Frutas/metabolismo , Transcriptoma/genética , Genómica
2.
Plant Cell Environ ; 47(4): 1379-1396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221869

RESUMEN

Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.


Asunto(s)
Arabidopsis , Prunus armeniaca , Prunus , Temperatura , Frutas , Altitud , Prunus/genética , Prunus/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética
3.
J Chem Inf Model ; 64(13): 5207-5218, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38913174

RESUMEN

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Mutación , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Antivirales/farmacología , Antivirales/química , Humanos , Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Leucina/química , Termodinámica , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/metabolismo , Unión Proteica , Succinatos/química , Succinatos/farmacología , Succinatos/metabolismo , Lactamas , Nitrilos , Prolina
4.
Environ Res ; 259: 119478, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917931

RESUMEN

The alarming depletion of global inland lakes in recent decades makes it essential to predict water inflow from rivers to lakes (WIRL) trend and unveil the dominant influencing driver, particularly in the context of climate change. The raw time series data contains multiple components (i.e., long-term trend, seasonal periodicity, and random noise), which makes it challenging for traditional machine/deep learning techniques to effectively capture long-term trend information. In this study, a novel FactorConvSTLnet (FCS) method is developed through integrating STL decomposition, convolutional neural networks (CNN), and factorial analysis into a general framework. FCS is more robust in long-term WIRL trend prediction through separating trend information as a modeling predictor, as well as unveiling predominant drivers. FCS is applied to typical inland lakes (the Aral Sea and the Lake Balkhash) in Central Asia, and results indicate that FCS (Nash-Sutcliffe efficiency = 0.88, root mean squared error = 67m³/s, mean relative error = 10%) outperforms the traditional CNN. Some main findings are: (i) during 1960-1990, reservoir water storage (WSR) was the dominant driver for the two lakes, respectively contributing to 71% and 49%; during 1991-2014 and 2015-2099, evaporation (EVAP) would be the dominant driver, with the contribution of 30% and 47%; (ii) climate change would shift the dominant driver from human activities to natural factors, where EVAP and surface snow amount (SNW) have an increasing influence on WIRL; (iii) compared to SSP1-2.6, the SNW contribution would decrease by 26% under SSP5-8.5, while the EVAP contribution would increase by 9%. The findings reveal the main drivers of shrinkage of the inland lakes and provide the scientific basis for promoting regional ecological sustainability.

5.
Environ Res ; 249: 118377, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331150

RESUMEN

Nexus approach provides an effective perspective for implementing synergetic management of water resources. In this study, an interval two-stage chance-constrained water rights trading planning model under water-ecology-food nexus perspective (ITCWR-WEF) is proposed to analyze the interaction between water trading and water-ecology-food (WEF) nexus, which fills in the water resources management gaps from a novel nexus perspective. ITCWR-WEF incorporates hydrological simulation with soil and water assessment tool (SWAT), water rights configuration with interval two-stage chance-constrained programming (ITCP), and multi-criterion analysis with Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). The developed ITCWR-WEF is applied to a real case of Daguhe watershed, which has characteristics of water scarcity, food producing areas and fragile ecosystem. Initial water rights allocation is addressed before the trading. Mechanisms analysis is designed to reveal mutual effect of water rights trading and WEF nexus. Optimal water management scenario is identified through multi-criterion analysis. Results reveal that the mechanism of water rights trading with WEF nexus under low constraint-violation risk level of water availability and environment capacity is recommended to promote the rational water resources allocation to balance the economic goals, water environment and water supply security, as well as ecological and food water demand guarantees.


Asunto(s)
Conservación de los Recursos Hídricos , Recursos Hídricos , Abastecimiento de Agua , Recursos Hídricos/provisión & distribución , Abastecimiento de Agua/estadística & datos numéricos , Conservación de los Recursos Hídricos/métodos , Conservación de los Recursos Hídricos/estadística & datos numéricos , Agricultura/métodos , Agricultura/estadística & datos numéricos
6.
Nucleic Acids Res ; 50(D1): D211-D221, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34570238

RESUMEN

Small non-coding RNAs (sncRNAs) are pervasive regulators of physiological and pathological processes. We previously developed the human miRNA Tissue Atlas, detailing the expression of miRNAs across organs in the human body. Here, we present an updated resource containing sequencing data of 188 tissue samples comprising 21 organ types retrieved from six humans. Sampling the organs from the same bodies minimizes intra-individual variability and facilitates the making of a precise high-resolution body map of the non-coding transcriptome. The data allow shedding light on the organ- and organ system-specificity of piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs) and other non-coding RNAs. As use case of our resource, we describe the identification of highly specific ncRNAs in different organs. The update also contains 58 samples from six tissues of the Tabula Muris collection, allowing to check if the tissue specificity is evolutionary conserved between Homo sapiens and Mus musculus. The updated resource of 87 252 non-coding RNAs from nine non-coding RNA classes for all organs and organ systems is available online without any restrictions (https://www.ccb.uni-saarland.de/tissueatlas2).


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , ARN Nuclear Pequeño/genética , ARN Nucleolar Pequeño/genética , ARN de Transferencia/genética , Programas Informáticos , Animales , Atlas como Asunto , Femenino , Humanos , Internet , Masculino , Ratones , MicroARNs/clasificación , MicroARNs/metabolismo , Especificidad de Órganos , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/clasificación , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia/clasificación , ARN de Transferencia/metabolismo , Transcriptoma
7.
Nano Lett ; 23(3): 939-947, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701555

RESUMEN

The disorganized vasculatures in tumors represent a substantial challenge of intratumor nanomedicine delivery to exert the anticancer effects. Herein, we rationally designed a glutathione (GSH)-activated nitric oxide (NO) donor loaded bioinspired lipoprotein system (NO-BLP) to normalize tumor vessels and then promote the delivery efficiency of sequential albumin-bound paclitaxel nanoparticles (PAN) in tumors. NO-BLP exhibited higher tumor accumulation and deeper penetration versus the counterpart liposomal formulation (NO-Lipo) in 4T1 breast cancer tumors, thus producing notable vascular normalization efficacy and causing a 2.33-fold increase of PAN accumulation. The sequential strategy of NO-BLP plus PAN resulted in an 81.03% inhibition of tumor growth in 4T1 tumors, which was better than the NO-BLP monotherapy, PAN monotherapy, and the counterpart NO-Lipo plus PAN treatment. Therefore, the bioinspired lipoprotein of NO-BLP provides an encouraging platform to normalize tumor vessels and promote intratumor delivery of nanomedicines for effective cancer treatment.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Paclitaxel Unido a Albúmina/uso terapéutico , Óxido Nítrico , Sistemas de Liberación de Medicamentos/métodos , Paclitaxel , Neoplasias de la Mama/tratamiento farmacológico , Lipoproteínas/uso terapéutico , Nanopartículas/uso terapéutico , Línea Celular Tumoral
8.
Plant J ; 110(4): 1182-1197, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277890

RESUMEN

Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.


Asunto(s)
Prunus armeniaca , Prunus , China , Frutas/química , Genómica , Fitomejoramiento , Prunus/genética , Prunus armeniaca/genética
9.
Gynecol Endocrinol ; 39(1): 2237116, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37489849

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders in gynecology with severe metabolic abnormalities. Therefore, identifying effective treatments and drugs for PCOS is important. We aimed to investigate effect of the traditional Chinese medicine (TCM) Rubus chingii Hu (R. chingii) on ovarian function and insulin resistance (IR) of PCOS rat models, and to explore the underlying mechanisms. METHODS: A PCOS rat model was established by subcutaneous injection of dehydroepiandrosterone (DHEA) solution for 20 days. PCOS rats were randomly divided into a control group (CON), model group (MOD), metformin group (MET), TCM R. chingii group (RCG), and RCG + Ad-TXNIP groups. After 28 days of treatment, the samples were collected for subsequent experiments. RESULTS: R. chingii treatment alleviated hormone imbalance and IR while improving ovarian pathology in the PCOS model. R. chingi inhibited the activation of the thioredoxin-interacting protein (TXNIP)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in the ovarian tissue of PCOS rats. Furthermore, TXNIP overexpression hindered the protective effect of R. chingii intervention in PCOS rats, as evidenced by the increase of homeostasis model assessment of insulin resistance (HOMA-IR), luteinizing hormone (LH), testosterone (T), C-reactive protein (CRP) levels, and atretic follicles. CONCLUSION: R. chingii intervention improved ovarian polycystic development by suppressing the TXNIP/NLRP3 inflammasome, which may be an effective treatment for PCOS.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Rubus , Animales , Femenino , Humanos , Ratas , Proteínas Portadoras , Proteínas de Ciclo Celular , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Síndrome del Ovario Poliquístico/terapia , Rubus/química
10.
Nucleic Acids Res ; 49(W1): W409-W416, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009375

RESUMEN

Which genes, gene sets or pathways are regulated by certain miRNAs? Which miRNAs regulate a particular target gene or target pathway in a certain physiological context? Answering such common research questions can be time consuming and labor intensive. Especially for researchers without computational experience, the integration of different data sources, selection of the right parameters and concise visualization can be demanding. A comprehensive analysis should be central to present adequate answers to complex biological questions. With miRTargetLink 2.0, we develop an all-in-one solution for human, mouse and rat miRNA networks. Users input in the unidirectional search mode either a single gene, gene set or gene pathway, alternatively a single miRNA, a set of miRNAs or an miRNA pathway. Moreover, genes and miRNAs can jointly be provided to the tool in the bidirectional search mode. For the selected entities, interaction graphs are generated from different data sources and dynamically presented. Connected application programming interfaces (APIs) to the tailored enrichment tools miEAA and GeneTrail facilitate downstream analysis of pathways and context-annotated categories of network nodes. MiRTargetLink 2.0 is freely accessible at https://www.ccb.uni-saarland.de/mirtargetlink2.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/metabolismo , Programas Informáticos , Animales , Aniridia/genética , Redes Reguladoras de Genes , Humanos , Ratones , Ratas
11.
Nucleic Acids Res ; 49(2): e10, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33290507

RESUMEN

Results of massive parallel sequencing-by-synthesis vary depending on the sequencing approach. CoolMPS™ is a new sequencing chemistry that incorporates bases by labeled antibodies. To evaluate the performance, we sequenced 240 human non-coding RNA samples (dementia patients and controls) with and without CoolMPS. The Q30 value as indicator of the per base sequencing quality increased from 91.8 to 94%. The higher quality was reached across the whole read length. Likewise, the percentage of reads mapping to the human genome increased from 84.9 to 86.2%. For both technologies, we computed similar distributions between different RNA classes (miRNA, piRNA, tRNA, snoRNA and yRNA) and within the classes. While standard sequencing-by-synthesis allowed to recover more annotated miRNAs, CoolMPS yielded more novel miRNAs. The correlation between the two methods was 0.97. Evaluating the diagnostic performance, we observed lower minimal P-values for CoolMPS (adjusted P-value of 0.0006 versus 0.0004) and larger effect sizes (Cohen's d of 0.878 versus 0.9). Validating 19 miRNAs resulted in a correlation of 0.852 between CoolMPS and reverse transcriptase-quantitative polymerase chain reaction. Comparison to data generated with Illumina technology confirmed a known shift in the overall RNA composition. With CoolMPS we evaluated a novel sequencing-by-synthesis technology showing high performance for the analysis of non-coding RNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN no Traducido/química , Análisis de Secuencia de ARN/métodos , Especificidad de Anticuerpos , Biomarcadores , Biología Computacional , ADN Complementario/genética , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Demencia/sangre , Demencia/genética , Técnica del Anticuerpo Fluorescente Directa , Biblioteca de Genes , Humanos , Biopsia Líquida , MicroARNs/química , MicroARNs/genética , Nucleótidos/inmunología , ARN no Traducido/síntesis química , ARN no Traducido/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Pestic Biochem Physiol ; 196: 105613, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945230

RESUMEN

In this study, seven novel anthraquinones (1-7) and four described anthraquinones (8-11) were purified from Nicotiana tabacum-derived Aspergillus oryzae YNCA1220. It is worth noting that only analogs of 4 and 5 have been reported as natural products to date, while the nuclei of compounds 1-3, 6 and 7 were isolated for the first time in nature. Among them, compounds 1-3 bear an unusual anthra[2,3-b]furan-9,10-dione nucleus, 4 and 5 possess a rare 3-methyl-1H-pyrrol-2-yl substituent, and 6 and 7 are new framework anthraquinones bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. Interestingly, the in vivo assays indicated that 1, 4 and 5 had inactivation effects against tobacco mosaic virus (TMV) with inhibition rates of 41.6%, 55.4% and 38.6%, respectively, at a concentration of 50 µg/mL, which were better than that of the positive control agent, ningnanmycin (33.8%). Compounds 1, 4 and 5 also had protective effects with inhibition rates of 48.7%, 60.2% and 43.5% at the same concentration, while 4 had a better curative effect than ningnanmycin at a concentration of 100 µg/mL. In addition, mechanistic studies also revealed that a potent direct effect on TMV, the induction of SAR in tobacco plants, and the effective regulation of defense enzymes, defense genes, and defense hormones may be the reasons for the significant effects of 4 against TMV. At the same time, downregulation of the expression of total NtHsp70 protein by inhibiting the related Hsp70 genes may also be involved in tobacco resistance to TMV. To evaluate whether compounds have broader antiviral activities, the antirotavirus activities of new isolates were also evaluated and found to be highly effective with a therapeutic index (TI) value ranging from 11.6 to 17.7. This study suggests that the above anthraquinone compounds, particularly 4, have broad spectrum antiviral activities. The successful isolation and structure identification of the above anthraquinones provide new materials for the screening of anti-TMV agents and contribute to the improved utilization of N. tabacum-derived fungi.


Asunto(s)
Aspergillus oryzae , Virus del Mosaico del Tabaco , Nicotiana , Antraquinonas/farmacología , Bioensayo , Antivirales/farmacología
13.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298764

RESUMEN

ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a significant challenge to its widespread application in trace detection. In this work, we present a reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasensitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size and distribution of AuNPs, numerous efficient and densely packed "hot spots" were created on the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10-10 M and a linear detection of organic pesticide molecules within 10-6-10-10 M, which is significantly lower than the EU Environmental Protection Agency regulation standards. The strategy of constructing ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS sensing platforms for food safety monitoring.


Asunto(s)
Nanopartículas del Metal , Plaguicidas , Oro/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
14.
Environ Monit Assess ; 195(10): 1163, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676307

RESUMEN

Territorial space exhibits multiple functional attributes, which comprise production, living, and ecological functions usually. Optimizing the production-living-ecological space (PLES) has become the key to territorial and spatial planning; the scientific identification of the PLES lays a foundation for space optimization and has important guiding significance in territorial spatial zoning. To achieve the integration of macro-scale and micro-scale PLES, with the Urban Agglomeration in Central Yunnan as the research area in this study, the PLES functional identification systems from the administrative unit scale and the grid scale are constructed. The types of PLES are determined by integrating qualitative and quantitative evaluation results and using an improved primacy index model from a composite spatial perspective. On that basis, the division of comprehensive zoning is achieved for land use functions through kernel density analysis. As indicated by the results, the model is capable of reflecting the macro background of the PLES functions in administrative regions while characterizing the micro differences at the grid level in administrative units. There are significant differences in the production, living, and ecological functional spaces in the Urban Agglomeration. Production functions are concentrated in the central and northeastern, living functions are concentrated in the central, and ecological functions are concentrated in the western and northeastern, with significantly consistent or complementary spatial distributions of each other. The PLES of Urban Agglomeration includes production space (PS), ecological space (ES), production-living space (P-LS), production-ecological space (P-ES), living-ecological space (L-ES), and production-living-ecological space (P-L-ES), placing a focus on ES, P-ES, and P-L-ES, which marks significant differences in spatial distribution among different spatial types. The study area is divided into 24 functional zones, which are classified into 6 categories, and optimization paths are proposed. This study will provide a reference for territorial and spatial planning in spatial functional zoning, spatial pattern optimization, and land management applications.


Asunto(s)
Planificación de Ciudades , Monitoreo del Ambiente , China , Ecosistema
15.
Environ Res ; 212(Pt E): 113602, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660568

RESUMEN

The challenge from pathogenic infections still threatens the health and life of people in developing areas. An efficient, low-cost, and abundant-resource disinfection method is desired for supplying safe drinking water. This study aims to develop a novel Ti3+ doping TiO2 nanoparticle decorated ceramic disk filter (Ti3+/TiO2@CDF) for point-of-use (POU) disinfection of drinking water. The production of Ti3+/TiO2@CDF was optimized to maximize disinfection efficiency and flow rate. Under optimal conditions, the log reduction value (LRV) could reach up to 7.18 and the flaw rate was 108 mL/h. The influences of environmental factors were also investigated. Natural or slightly alkaline conditions, low turbidity, and low concentration of humic acid were favorable for the disinfection of Ti3+/TiO2@CDF, while co-existing HCO3- ions and diatomic cations (Ca2+ and Mg2+) exhibited the opposite effect. Furthermore, the practicability and stability of Ti3+/TiO2@CDF was demonstrated. Ti3+/TiO2@CDF showed high disinfection efficiency for E. coli and S. aureus under a range of concentrations. Long-term experiment indicated that Ti3+/TiO2@CDF was stable. The underlying disinfection mechanisms were investigated and concluded as the combination of retention, adsorption, and photocatalytic disinfection. The developed Ti3+/TiO2@CDF can provide an effective and reliable disinfection tool for POU water treatment in remote area.


Asunto(s)
Agua Potable , Nanopartículas , Purificación del Agua , Catálisis , Cerámica , Desinfección/métodos , Escherichia coli , Humanos , Staphylococcus aureus , Titanio , Purificación del Agua/métodos
16.
J Environ Manage ; 304: 114243, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34915382

RESUMEN

Water shortage poses a great challenge to the health of population and environment and impedes socio-economic development. Therefore, a comprehensive model is necessary to promote the adaptation of the whole socio-economic system to limited water resources. To achieve it, a sustainable conjunctive water management model (SCWM) was developed. In SCWM, direct (physical) and indirect (virtual or embodied) water consumptions of multiple water resources in future scenarios are projected, and the sustainable performances of various water-saving scenarios are quantified from the perspectives of water resources, economy, and ecosystem under water capping policy. A case study of Shaanxi, a typical water shortage province in central-eastern China, is conducted aimed at conquering the irrational use of surface- and ground-water subjected to the constraint of future total water use quota. Key findings contain optimal possibility of adapting water shortage via saving water through increasing industrial water efficiency to 11.12 m3/10,000 CNY and reducing 40% of agricultural final demand (Summation of direct and indirect water savings of the two scenarios are 41.57 × 108 m3 and 20.27 × 108 m3, respectively.) and nonsynergistic effects of simultaneous decreasing final demand of multiple sectors on water consumption intensity (WCI) of total (all kinds of water) water, surface- and ground-water. To devise effective policies for conjunctive management of surface- and ground-water, positive utility, economic structure and water productivity should be heeded, and proposals emphasize trade-offs between surface water saving and groundwater conservation, water metabolic and socio-economic systems sustainability and negative interaction of multiple sectors on economy and WCI should be framed. The innovation of this study is the development of SCWM, which can provide sustainable solution for future multiple-source water saving management measures thoroughly concerning direct and indirect water and sectorial interactions. The model not only brings insights to Shaanxi's water management but also can be used for other similar arid area.


Asunto(s)
Agua Subterránea , Abastecimiento de Agua , China , Conservación de los Recursos Naturales , Ecosistema , Agua , Recursos Hídricos
17.
J Environ Manage ; 309: 114679, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176569

RESUMEN

Water related problems, including water scarcity and pollution, have become increasingly urgent challenges especially in arid and semiarid regions. Two-dimensional water trading (2DWT) mechanism has been designed to unify the quantity and quality of water for relieving the water crisis. This study aims to develop a risk aversion optimization-two dimensional water trading model (RAO-2DWTM) for planning the regional-scale water resources management system (RWMS). This is the first attempt on planning RWMS through risk aversion optimization within the two-dimensional water trading framework. RAO-2DWTM cannot only support in-depth analysis regarding the effect of decision maker's preferences on system risk in different trading scenarios, but also reflect the interaction between water right trading and effluent trading, as well as disclose the optimal scheme of water resource management under uncertainties. Twenty four scenarios associated with different trading scenarios and robust levels are analyzed. The optimization scheme under the optimal risk control level is determined based on TOPSIS. Results revealed that 2DWT would bring high benefit with reduced risk cost, water deficit and emissions, implying the effectiveness of 2DWT mechanism. The results also disclosed that risk aversion behavior can mitigate water scarcity and pollution, as well as reduce risk cost, but may lead to some losses of system benefit. Consequently, decision makers should make trade-offs between system benefit and risk in identifying desired trading schemes.


Asunto(s)
Desarrollo Sostenible , Agua , China , Incertidumbre , Contaminación del Agua/prevención & control , Recursos Hídricos
18.
Physiol Plant ; 173(4): 1926-1934, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34431527

RESUMEN

Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.


Asunto(s)
Plantas , Transducción de Señal , Comunicación , Simbiosis
19.
Environ Sci Technol ; 55(1): 220-229, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33354966

RESUMEN

Substantial anthropogenic emissions have resulted in serious environmental problems in China. Direct emissions and demand-pulled emissions along the supply chains have been extensively investigated. However, understanding the mechanism of how the sectoral emission is transferred through production activities along the sale chains at different production layers remains a challenge. In this paper, a top-down multilayer emission attribution model is developed to unveil the metabolism of multilayer input-driven emissions. For the first time, a diagramming approach enables the exhaustive depiction of the connections between primary input attributions and final production attributions, which allows accurate reallocation of the emission responsibilities to sectors at different production layers. Individual sale chain paths and supply chain paths have been extracted and ranked according to the contributions of emissions. A four-perspective comparison of sectoral emissions (i.e., direct emissions along sale chains, enabled emissions, direct emissions along the supply chains, and embodied emissions) is assessed. We find that at multiple production layers, sectoral direct emissions along the sale chains differ greatly from direct emissions along the supply chains. By comprehensively considering providers, consumers, and producers within a metabolic system, policy-makers should encourage upstream sectors to improve their cleaner production technologies and downstream sectors to adjust their industrial structures.


Asunto(s)
Carbono , Industrias , Dióxido de Carbono/análisis , China , Comercio
20.
Environ Res ; 196: 110368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33131712

RESUMEN

Climate change has significant impacts on the Pearl River Basin, and the regional ecological environment and human production may face severe challenges in the future due to changes in temperature and precipitation, as well as their derivative disasters (e.g., drought). Therefore, a full understanding of the possible impacts of climate change on Pearl River Basin is desired. In this study, the potential changes in temperature, precipitation, and drought conditions were projected through a stepwise clustering projection (SCP) model driven by multiple GCMs under two different RCPs. The developed model could facilitate specifying the inherently complex relationship between predictors and predictands, and its performance was proven to be great by comparing the observations and model simulations. A multi-level factorial analysis was employed to explore the major contributing factors to the variations in projecting drought conditions. The results suggested that the Pearl River Basin would suffer significant increasing trends in Tmean (i.e., 0.25-0.34 °C per decade under RCP4.5 and 0.42-0.60 °C per decade under RCP8.5), and the annual mean precipitation would increase under both RCPs. The drought events lasting for 1-2 months would be decreased by 7.7%, lasting for 3-4 months would be increased by 4.3%, and lasting for more than five months would be increased by 3.4% under RCP4.5, respectively. While they changed to 6.1%, 1.4%, and 4.7% under RCP8.5, respectively. More medium and long-term drought events with higher drought severity would occur. GCM has dominant influences on four different responses of drought duration, accounting for 50.20%, 52.61%, 56.71%, and 56.24% of total variabilities, respectively. Meanwhile, the effects explained by GCM*RCP interactions cannot be neglected, with an average contribution rate of 44.37%, 37.86%, 37.66%, and 35.83%, respectively.


Asunto(s)
Cambio Climático , Ríos , China , Análisis por Conglomerados , Sequías , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA