Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(21): 6353-6361, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757814

RESUMEN

Polydopamine (PDA)-derived melanin-like materials exhibit significant photothermal conversion owing to their broad-spectrum light absorption. However, their low near-infrared (NIR) absorption and inadequate hydrophilicity compromise their utilization of solar energy. Herein, we developed metal-loaded poly(norepinephrine) nanoparticles (PNE NPs) by predoping metal ions (Fe3+, Mn3+, Co2+, Ca2+, Ga3+, and Mg2+) with norepinephrine, a neuron-derived biomimetic molecule, to address the limitations of PDA. The chelation between catechol and metal ions induces a ligand-to-metal charge transfer (LMCT) through the formation of donor-acceptor pairs, modulating the light absorption behavior and reducing the band gap. Under 1 sun illumination, the Fe-loaded PNE coated wood evaporator achieved a high seawater evaporation rate and efficiency of 1.75 kg m-2 h-1 and 92.4%, respectively, owing to the superior hydrophilicity and photothermal performance of PNE. Therefore, this study offers a comprehensive exploration of the role of metal ions in enhancing the photothermal properties of synthetic melanins.


Asunto(s)
Melaninas , Norepinefrina , Melaninas/química , Norepinefrina/química , Polimerizacion/efectos de la radiación , Polímeros/química , Neurotransmisores/química , Indoles/química , Oxidación-Reducción , Metales/química , Nanopartículas/química
2.
Angew Chem Int Ed Engl ; 63(29): e202407102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744673

RESUMEN

Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.

3.
Inorg Chem ; 62(48): 19804-19811, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972342

RESUMEN

Lead halide hybrids templated by coordinating ligands are a class of ultrastable broadband self-trapped emitters that overcome the stability problems of conventional ionically bound halide hybrids. However, enhancing their photoluminescence (PL) performances by crystal engineering remains a huge challenge. Herein, for the first time, we have successfully employed the synthetic strategy of two coordinating ligands to synthesize a series of layered lead halide coordination polymers, [Pb6X10]2+(chdc2-)(2,2'-bpy)2 (X = Cl/Br, chdc = trans-1,4-cyclohexanedicarboxylate), which involves chdc as a pillaring strut and 2,2'-bpy as a chelating ligand. The introduction of a chelating ligand (2,2'-bpy) enables stronger lattice distortion of lead halide layers and enhances UV-light absorption and ligand-to-metal charge transfer (LMCT) process, thereby achieving a substantial improvement of photoluminescence quantum yields (PLQYs) over the control layered materials templated by a single chdc ligand. This class of lead halide hybrids templated by two coordinating ligands exhibit chemical "inertness" after being subjected to various chemical conditions for 48 h, maintaining stable and efficient broadband emission. Density functional theory calculations and femtosecond transient absorption spectra (fs-TA) demonstrate that the broadband emission originates from self-trapped excitons, which are more populated with the LMCT contribution from 2,2'-bpy. This study shows a rational strategy at the molecular level to modulate the photophysical properties of chemically robust lead halide coordination polymers.

4.
Inorg Chem ; 61(27): 10454-10460, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762569

RESUMEN

Multifunctional materials have always been an attractive research area, but how to combine multiple excellent properties in one compound remains a considerable challenge. Organic-inorganic hybrid compounds are widely used in the design of such materials due to their rich properties and flexible assembly. Herein, two new manganese(II)-based organic-inorganic hybrid compounds, (C6NH16)2MnBr4 (1) and (C7NH18)2MnBr4 (2), are prepared by the solution method. Compounds 1 and 2 both emit extremely strong green light under UV excitation, with high quantum yields of 45.93 and 50.98%, respectively. In addition, reversible solid-state phase transitions and obvious switchable dielectric properties are shown at 378/366 and 361/352 K, respectively. The coexistence of the dual stimulus-response characteristics of temperature and light in compounds 1 and 2 opens a new path for exploring more multifunctional phase transition materials.

5.
Chemistry ; 27(63): 15716-15721, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498317

RESUMEN

The multifunctional two-dimensional (2D) organic-inorganic hybrid perovskites have potential applications in many fields, such as, semiconductor, energy storage and fluorescent device etc. Here, a 2D Ruddlesden-Popper (RP) perovskite (IPA)2 (FA)Pb2 I7 (1, IPA+ =C3 H9 NI+ , FA+ =CN2 H5 + ) is determined for its photophysical properties. Strikingly, 1 reveals a solid reversible phase transition with Tc of 382 K accompanied by giant entropy change of 40 J mol-1 K-1 . Further optical investigations indicate that 1 reveals a narrow direct bandgap (2.024 eV) attributed to the slight bending of I-Pb-I edge and inorganic [Pb2 I7 ]n layer and a superior photoluminescence (PL) emission with super long lifetime of 0.1607 ms. It is believed that this work will pave an avenue to further design multifunctional semiconductors that combines energy storage and photoelectric materials.

6.
Inorg Chem ; 60(24): 18918-18923, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34872246

RESUMEN

A novel organic-inorganic hybrid perovskite crystal, [ClC6H4(CH2)2NH3]2CuBr4 (1), having experienced an invertible high-temperature phase transition near Tc (the Curie temperature Tc = 355 K), has been successfully synthesized. The phase-transition characteristics for compound 1 are thoroughly revealed by specific heat capacity (Cp), differential thermal analysis, and differential scanning calorimetry tests, possessing 16 K broad thermal hysteresis. Multiple-temperature powder X-ray diffraction analysis further proves the phase-transition behavior of compound 1. Moreover, compound 1 exhibits a significant steplike dielectric response near Tc, revealing that it can be deemed to be a promising dielectric switching material. The variable-temperature fluorescence experiments show distinct photoluminescence (PL) changes of compound 1. Further investigation and calculation disclose that the fluorescence lifetime of compound 1 can reach as long as 55.46 µs, indicating that it can be a potential PL material. All of these researches contribute a substitutable avenue in the design and construction of neoteric phase-transition compounds combining high Curie temperature and PL properties.

7.
Inorg Chem ; 60(2): 1195-1201, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33356190

RESUMEN

Due to the existence of some cross properties such as SHG (second-harmonic generation), ferroelectricity, piezoelectricity, and thermoelectricity, molecular ferroelectrics have been widely used as a composite multipurpose material. Particularly, organic-inorganic molecular ferroelectrics have received much interest recently because of their unique flexible structures, friendly environment, ease of synthesis, etc. Also, these hybrids show great flexibility in band-gap engineering. Here we report a new molecular halide, [C6H13N3SbBr5]n (1; C6H13N3 = 1-(3-aminopropyl)imidazole), which experiences a unique ferroelectric to paraelectric phase transition at around 230 K from space group P21 to P21/c. Significantly, compound 1 exhibits a narrow band gap with a value of 2.52 eV, large pronounced SHG-active, perfect rectangle hysteresis loops with a large spontaneous polarization of 6.86 µC/cm2. DSC (differential scanning calorimetry) and dielectric dependence on temperature tests and the volume change before and after the phase transition show that compound 1 is characterized by a second-order phase transition. These findings will contribute to the multifunctional materials field of organic-inorganic hybrids.

8.
Adv Mater ; 36(30): e2403651, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692649

RESUMEN

Photocatalytic CO2 reduction to high-value-added C2+ products presents significant challenges, which is attributed to the slow kinetics of multi-e- CO2 photoreduction and the high thermodynamic barrier for C-C coupling. Incorporating redox-active Co2+/Ni2+ cations into lead halide photocatalysts has high potentials to improve carrier transport and introduce charge polarized bimetallic sites, addressing the kinetic and thermodynamic issues, respectively. In this study, a coordination-driven synthetic strategy is developed to introduce 3d transition metals into the interlamellar region of layered organolead iodides with atomic precision. The resultant bimetallic halide hybrids exhibit selective photoreduction of CO2 to C2H5OH using H2O vapor at the evolution rates of 24.9-31.4 µmol g-1 h-1 and high selectivity of 89.5-93.6%, while pristine layered lead iodide yields only C1 products. Band structure calculations and photoluminescence studies indicate that the interlayer Co2+/Ni2+ species greatly contribute to the frontier orbitals and enhance exciton dissociation into free carriers, facilitating carrier transport between adjacent lead iodide layers. In addition, Bader charge distribution calculations and in situ experimental spectroscopic studies reveal that the asymmetric Ni-O-Pb bimetallic catalytic sites exhibit intrinsic charge polarization, promoting C-C coupling and leading to the formation of the key *OC-CHO intermediate.

9.
Chem Asian J ; 17(1): e202101134, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34755488

RESUMEN

Cyclic organic amines are emerging as excellent building blocks to assemble organic-inorganic hybrid phase transition materials due to their flexible cyclic structure. Here, we have assembled a 1D organic-inorganic hybrid dielectric material C5 H6 NOPbBr3 (1) by alloying the cyclic organic amine 3-hydroxypyridine. 1 displays a remarkable switchable dielectric response induced by an order-disorder transformation of the organic moiety, this transformation behaviour is confirmed by DSC and Hirshfeld surface measurements. More interestingly, 1 has a narrowband emission (FWHM=4.64 nm) at 590 nm; FWHM is a major quality figure for narrowband photodetectors. In addition, 1 exhibits semiconducting properties with an indirect bandgap of 2.78 eV by the analysis of the UV-Vis absorption results.

10.
Dalton Trans ; 51(17): 6860-6867, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438712

RESUMEN

Chiral organic-inorganic hybrid perovskites have gained extensive research interest due to their combination of chirality and the excellent optical, electrical and spin properties of perovskite materials, especially in two-dimensional hybrid perovskites. Herein, we report two-dimensional organic-inorganic perovskite enantiomeric ferroelectric [(R)-ß-MPA]2CdCl4 (1) and [(S)-ß-MPA]2CdCl4 (2) (MPA+ =methylphenethylammonium). Their mirror relationships are verified by both circular dichroism (CD) and crystal structures. At the same time, the two exhibit very similar ferroelectricity and related properties, including high Curie temperature (343 K), large spontaneous polarization (4.65 µC cm-2), and low coercive force field (13 kV cm-1). Unusually, at room temperature the crystal phase is monoclinic with the space group C2 and above the phase transition temperature it is triclinic with the space group P1, which means that the symmetry decreases with the increase of temperature. In addition, it exhibits a flexible switchable SHG response, while [(R)-ß-MPA]2CdCl4 and [(S)-ß-MPA]2CdCl4 have wide band gaps of 4.21 and 4.26 eV, respectively, mainly contributed by inorganic CdCl6 octahedra. This discovery opens a new way for the construction of two-dimensional enantiomeric molecular ferroelectrics.

11.
Chem Asian J ; 16(22): 3664-3668, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34519418

RESUMEN

Bistable switches (electrical switching between "ON" and "OFF" bistable states) have gradually developed into an ideal category of highly intelligent materials, due to their significant applications in optical technology, signal processors, data storage and other switchable media applications in the field of electrical devices. Here, we successfully designed and synthesized [(FC6 H4 C2 H4 NH3 )2 MCl4 ]n (FC6 H4 C2 H4 NH3 + )=deprotonated 4-fluoro- phenethylamine; M=Cd (1), Mn (2)), which realized the coupling of thermo-dielectric switching characteristics, semi-conductor characteristics and photo-luminescent properties. DSC (differential scanning calorimetry) and dielectric measurements show that 1 is a sensitive dielectric bistable switch between the high dielectric (ON) and low dielectric (OFF) states. The temperature-variable single crystal structure shows that the both 1 and 2 undergo a high-temperature reversible phase transition around 383 K/380 K, which is caused by the order-disordered transformation of organic cations and the slight distortion of the inorganic framework. In particular, 1 shows outstanding switchable dielectric behavior and semiconducting properties. Further, 1 and 2 emit strong green and yellow luminescence at 527 and 595 nm, respectively.

12.
Chem Commun (Camb) ; 57(85): 11225-11228, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633013

RESUMEN

A novel chromium(VI)-based compound, [(CH3CH2)3N(CH2Cl)][CrO3Cl] (1), undergoes a high-temperature phase transition at around 340.9 K, accompanied by an ultra-large entropy change of 63.49 J mol-1 K-1. Compound 1 exhibits a moderate ferroelectric polarization of 0.48 µC cm-2 and a remarkable CD signal. Strikingly, 1 occupies a narrow band gap of 2.22 eV, which is chiefly attributed to the inorganic [CrO3Cl]- tetrahedron. It is believed that these findings will contribute to an alternative pathway for the design of multifunctional ferroelectric materials, whose potential applications will be in semiconductors, energy storage, etc.

13.
Chem Sci ; 12(39): 13061-13067, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745536

RESUMEN

Low-dimensional chiral organic-inorganic hybrid metal halides have attracted a lot of attention in recent years due to their unique intrinsic properties, including having potential applications in optoelectronic and spintronic devices. However, low-dimensional chiral molecular ferroelectrics are very rare. In this paper, we report a novel zero-dimensional molecular ferroelectric (C9H14N)2CdBr4 (C9H14N+ = protonated 3-phenylpropylamine), which has obvious dielectric and thermal anomalies and shows a high Curie temperature at 395 K. It crystallizes in the P21 space group at room temperature, showing a strong CD signal, large spontaneous polarization (P s = 13.5 µC cm-2), and a clear ferroelectric domain. In addition, it also exhibits a flexible SHG response. The photoluminescence spectrum shows that 1 has broadband luminescence. At the same time, compound 1 has a wide band gap, which is mainly contributed to by the inorganic CdBr4 tetrahedron. The high tunability of low-dimensional chiral molecular ferroelectrics also opens up a way to explore multifunctional chiral materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA