RESUMEN
Liquid-crystal elastomers (LCEs) capable of performing large and reversible deformation in response to an external stimulus are an important class of soft actuators. However, their manufacturing process typically involves a multistep approach that requires harsh conditions. For the very first time, LCEs with customized geometries that can be manufactured by a rapid one-step approach at room temperature are developed. The LCEs are hydrogen bond (H-bond) crosslinked main chain polymers comprising flexible short side chains. Applying a stretching/shear force to the LCE can simultaneously induce mesogen alignment and H-bond exchange, allowing for the formation of well-aligned LCE networks stabilized by H-bonds. Based on this working principle, soft actuators in fibers and 2D/3D objects can be manufactured by mechanical stretching or melt extrusion within a short time (e.g. <1â min). These actuators can perform reversible macroscopic motions with large, controlled deformations up to 38 %. The dynamic nature of H-bonds also provides the actuators with reprocessability and reprogrammability. Thus, this work opens the way for the one-step and custom manufacturing of soft actuators.
RESUMEN
Cholesteric liquid crystal (ChLC) materials with broadband reflection are witnessing a significant surge in interest due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain ChLC films with a broad reflection band. This critical review systematically summarizes the optical background of the ChLCs with broadband reflection characteristics, methods to obtain broadband reflection of ChLCs, as well as the application in this area. Combined with the research status and the advantages in the field, the challenges and opportunities of applied scientific problems in the research direction are also introduced.
RESUMEN
Fluorescent cholesteric liquid crystal materials (FCLC) with aggregation-induced emission (AIE) properties can effectively solve the contradiction between aggregation-induced quenching (ACQ) and liquid crystal self-assembly when light-emitting materials are aggregated, and they have great application value in the fields of anti-counterfeit detection and information hiding. However, generating a visually appealing design, logo, or image in the application typically requires an intricate fabrication process, such as the use of prefabricated molds and photomasks, which greatly limits the practical application of FCLC materials. Herein is reported a new method for spatially patterned liquid crystal (LC) microdroplet arrays using drop-on-demand inkjet printing technology. Through rational composition design, a spatial array composed of different liquid crystal microdroplets was established, and the array contains two entirely distinct but intact patterns at the same time, which can be reversibly switched under the irradiation of UV and natural light. This study provides a new method for the integrated preparation of different component liquid crystal materials.
RESUMEN
Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-responsive behavior. However, there are limited reports of noncovalent RTP materials because of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent material prepared via facile grinding that can emit fluorescence and RTP emission differing from their components' photoluminescent behavior. Exciplex can be formed during the preparation process to act as the minimum emission unit. We found that H-bonds in the RTP system provide restriction to nonradiative transition but also enhance energy transformation and energy level degeneracy in the system. Moreover, water-stimulated photoluminescent ink is produced from the materials to achieve double-encryption application with good resolution.
RESUMEN
BACKGROUND: Cadmium (Cd) is amongst the most toxic heavy metals that severely affects crop growth, whereas application of nanoparticles (NPs) to negate the toxic effects of heavy metals could be an effective management approach. In the present study, the seeds of two fragrant rice varieties i.e., Yuxiangyouzhan and Xiangyaxiangzhan under normal and Cd stress conditions i.e., 0 and 100 mg L- 1 applied with four levels of ZnO NPs i.e., 0, 25, 50, and 100 mg L- 1. RESULTS: Seed priming with ZnO NPs had no significant effect on the seed germination (p > 0.05) however, it substantially improved the seedling growth and other related physiological attributes under the Cd stress. The mean fresh weight of the shoot, and whole seedling was increased by 16.92-27.88% and by 16.92-27.88% after ZnO NPs application. The root fresh weight, root-shoot length was also substantially improved under ZnO NPs treatment. Moreover, application of ZnO NPs induced modulations in physiological and biochemical attributes e.g., the superoxide dismutase (SOD) activity in root and shoot, the peroxidase (POD) activity and metallothionein contents in root were increased under low levels of ZnO NPs. The α-amylase and total amylase activity were improved by ZnO NPs application under Cd Stress. Besides, modulation in Zn concentration and ZnO NPs uptake in the seedling were detected. The metabolomic analysis indicated that various pathways such as alanine, aspartate and glutamate metabolism, phenylpropanoid biosynthesis, and taurine and hypotaurine metabolism were possibly important for rice response to ZnO NPs and Cd. CONCLUSION: Overall, application of ZnO NPs substantially improved the early growth and related physio-biochemical attributes in rice. Our findings provide new insights regarding the effects of ZnO NPs on seed germination, and early growth of rice, and its potential applications in developing crop resilience against Cd contaminated soils.
Asunto(s)
Cadmio/toxicidad , Metaboloma/efectos de los fármacos , Nanopartículas/química , Oryza/efectos de los fármacos , Semillas/química , Óxido de Zinc/química , Antioxidantes , Cadmio/análisis , Contaminación Ambiental/análisis , Metalotioneína/análisis , Metales Pesados/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Peroxidasa , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Contaminantes del SueloRESUMEN
Cloudy weather with low light is more common during rice growing season of South China which often leads reduced yield and aroma formations in fragrant rice. However, exogenous γ-aminobutyric acid (GABA) application could enhance the 2-acetyl-1-pyrroline (2AP) accumulations and yield of fragrant rice under low light conditions. Field and pot experiments were conducted with three fragrant rice cultivars i.e., Basmati and Yuxiangyouzhan (indica), and Yungengyou 14 (japonica) that were grown under three different treatments i.e., normal light + GABA 0 mg L-1 (CK), low light + GABA 0 mg L-1 (T1), and low light + GABA 250 mg L-1 (T2). The results revealed that the grain 2AP contents were increased by 14.67-34.83% and up to 29.34% under T1 and T2 treatments in pot and field experiments, respectively, as compared with CK. The T1 and T2 treatments improved aroma owing to regulation in the accumulation of micronutrients i.e., Na, Mn, and Fe and enzyme activities involved in 2AP biosynthesis. The grain yield was substantially reduced in T1 as compared with T2 treatment for all rice cultivars. On the other hand, GABA application improved the grain yield under low light conditions by regulating the plant growth, and related physiological and biochemical attributes in all rice cultivars. Thus, GABA could balance low light-induced 2AP content and grain yield by modulating morphological and yield related attributes as well as physio-biochemical responses of fragrant rice.
Asunto(s)
Oryza/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , China , Grano Comestible/química , Odorantes , Perfumes/análisis , Proteínas de Plantas/análisis , PirrolesRESUMEN
Salinity negatively effects the growth and productivity of crop plants; however, the effects of hydrogen rich water (HRW) on the early growth of fragrant rice under salinity stress are rarely investigated. In present study, two HRW treatments: foliar application (F-HRW) and irrigation (I-HRW) were applied on the two fragrant rice cultivars, Yuxiangyouzhan and Xiangyaxiangzhan, grown under normal and salt stress conditions, i.e., 0 and 150 mmol NaCl L-1, respectively. Plants without HRW application were grown as control (CK). Results showed that the dry weight per unit plant height (mg cm-1) was increased by 12.6% and 23.0% in F-HRW and I-HRW, respectively under salt stress as compared with CK. Application of HRW, regardless of the application method, modulated the antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) while reduced malondialdehyde (MDA) contents under salt stress. Moreover, significant and positive relations were observed among total dry weight and shoot dry weight, dry weight per unit plant height, SOD and CAT activity in root. Overall, F-HRW application modulated the early growth and related physiological attributes in fragrant rice under salt stress whereas I-HRW was found to mitigate salt stress. Novelty statement: Involvement of endogenous H2 in plants for regulating various physiological functions is of great importance to stimulate and/or activate the antioxidant defense responses against oxidative stress; however, there is a lack of research in this aspect. The present study investigated the effects of hydrogen rich water (HRW) on the growth and physiological attributes of two fragrant rice cultivars grown under salt-stress. It was noteworthy to find that application of HRW either foliar application or irrigation improved the morphological characters, i.e., dry weight per unit plant height and enhanced the activities of antioxidants, i.e., peroxidase, superoxide dismutase and catalase whilst decreased the malonaldehyde content. Overall, the application of HRW modulates plant growth and physiological attributes in fragrant rice cultivars under salt-stress conditions. This study will be helpful in improving the early growth and/or stand establishment of fragrant rice nursery under saline conditions.
Asunto(s)
Oryza , Antioxidantes , Biodegradación Ambiental , Mecanismos de Defensa , Hidrógeno , Salinidad , AguaRESUMEN
Photo-initiated thiol-ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated. The chemical composition is found to significantly influence the microstructure and the related thermomechanical properties of the LCNs. The structure-property relationship is further explored using molecular dynamics simulations, revealing that the introduction of the chain extender promotes the formation of an ordered smectic LC phase instead of agglomerated structures. The concentration of the chain extender affects the liquid crystallinity of the LCNs, resulting in distinct thermomechanical and shape memory properties. This class of LCNs exhibits fast curing rates, high conversion levels, and tailorable liquid crystallinity, making it a promising material system for advanced manufacturing, where complex and highly ordered structures can be produced with fast reaction kinetics and low energy consumption.
RESUMEN
Fragrant rice is a high-valued quality rice type which is gaining much popularity over the globe due to its better cooking qualities and special aromatic characteristics. Selenium (Se) and silicon (Si) could improve the growth and yield of rice; however, the combine effects of Se and Si (Se-Si treatments) on rice grain quality, aroma and lodging in fragrant rice were rarely investigated. The pot and field experiments were conducted with two fragrant rice cultivars i.e., Xiangyaxiangzhan and Yuxiangyouzhan, grown under three Se levels i.e., 0, 120, and 240 mg kg-1 of soil (for pot experiment) and 0, 300, and 600 kg ha-1 (for field experiment) regarded as LSe, MSe and HSe, respectively and two Si levels i.e., 0 and 60 mg kg-1 of soil (for pot experiment) and 0 and 150 kg ha-1 (for field experiment) regarded as -Si and +Si, respectively. Results depicted that the Se-Si treatments regulated head rice yield, grain yield and yield related traits and the HSe+Si treatment sustainably improved the grain yield and head rice yield by regulating plant growth, antioxidant response and malondialdehyde (MDA) contents in fragrant rice. The Se-Si treatments also improved the grain 2AP contents owing to regulation in the proline, pyrroline-5-carboxylate (P5C) and γ-aminobutyric acid (GABA) contents. Besides, Se-Si treatments also regulated the grain quality attributes and influenced the plant Se contents. Moreover, the Si mitigated Se-induced lodging resulted from changes in the lodging parameters i.e., lodging index, fresh weight per tiller, pushing resistance force, plant height and bending moment. Overall, the Se and Si application improved the grain yield and regulated the dry weight accumulation, antioxidant attributes and quality attributes. Meanwhile, the Si application mitigated the negative effect of Se-induced lodging in fragrant rice.
Asunto(s)
Grano Comestible/efectos de los fármacos , Odorantes/análisis , Oryza/efectos de los fármacos , Selenio/farmacología , Silicio/farmacología , Antioxidantes/análisis , Relación Dosis-Respuesta a Droga , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo , Malondialdehído/análisis , Oryza/química , Oryza/crecimiento & desarrollo , Prolina/análisis , Pirroles/análisis , Suelo/químicaRESUMEN
A liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used as a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.
RESUMEN
A two-component liquid crystalline epoxy network (LCEN) with shape memory behavior was developed and evaluated as a candidate material for 3D printing. The cure kinetics of the uncured material and the shape memory properties of the cured LCEN were investigated by using parallel plate rheology and dynamic mechanical analysis, respectively. A commercially available fumed silica additive was introduced to the neat, uncured material to improve the rheological properties for 3D printing. The addition of fumed silica was found to increase the yield stress, shear-thinning behavior, and toughness of the uncured epoxy ink. Polarized light microscopy, differential scanning calorimetry, and wide-angle X-ray scattering measurements between the neat and additive-modified LCEN suggested a reduction in liquid crystalline alignment in the modified LCEN, owing to interactions between crystalline domains and fumed silica, which in turn influenced the mechanical behavior. Overall, the additive was found to be successful in preserving the shape memory properties of LCEN while improving its printability.
RESUMEN
Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.
Asunto(s)
Antineoplásicos , Histona Demetilasas con Dominio de Jumonji , Neoplasias de la Próstata , Humanos , Masculino , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Regulación hacia Arriba/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proteolisis/efectos de los fármacos , Interferones/metabolismo , Proteínas Nucleares , Proteínas RepresorasRESUMEN
The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.
Asunto(s)
Antineoplásicos , Proliferación Celular , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-bcl-6 , Humanos , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Quimera Dirigida a la ProteólisisRESUMEN
We investigate the irreversible adsorption of poly(3-hexylthiophene) (P3HT) polymer thin films on silicon dioxide/silicon (SiO2/Si) substrates during thermal annealing at a temperature below the melting temperature (Tm) but far above the glass transition temperature (Tg), i.e., Tg ⪠T = 170 °C < Tm, and its effect on their crystalline ordering and charge transport properties. It was found that short-time annealing enhances the molecular ordering of P3HT films, while prolonged thermal annealing gradually disrupts the crystalline structures and reduces the overall crystallinity of the film. Concurrently, thermal annealing at this temperature facilitates the slow irreversible adsorption of P3HT chains at the polymer-solid interface, resulting in the formation of a 1.7 Rg-thick (â¼18 nm thick) adsorbed layer on SiO2/Si substrates that is fully amorphous and contains a large fraction of loosely adsorbed chains. We postulate that such irreversible adsorption is responsible for the reduced crystalline packing of P3HT at the polymer-solid interface at Tg ⪠T < Tm, which further disrupts the molecular ordering of the entire 46 nm thick P3HT film by a long-range perturbation effect. Electrical measurements using an organic field-effect transistor (OFET) device reveal that the enhanced charge carrier mobility of P3HT films correlates with an optimized annealing time at Tg ⪠T < Tm, which achieves a balance between maximizing molecular ordering and minimizing the impact of irreversible chain adsorption. These findings provide new insights into the underlying mechanism of thermal annealing in tailoring the structure and property of conjugated polymer thin films prepared on solid substrates.
RESUMEN
BACKGROUND: SHP2 is a protein tyrosine phosphatase that is extensively involved in several signaling pathways related to cancer occurrence, and thus SHP2 has been proposed as an attractive target for cancer treatment. METHODS: After a brief introduction of SHP2, we provided a short overview of the structure, function and regulation mechanism of SHP2 in cancer occurrence. Then, this perspective focused on the current therapeutic strategies targeting SHP2, including SHP2 PTP inhibitors, SHP2 allosteric inhibitors and SHP2-targeting PROTACs, and discussed the benefits and defects of these strategies. Finally, the opportunities and challenges were presented. RESULTS: SHP2 regulated RAS-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 signaling pathways involved in the pathogenesis of cancer via conformations conversion. Current therapeutic strategies targeting SHP2, especially SHP2 allosteric inhibitors, hold significant potency and have broad application prospects for cancer therapy. CONCLUSION: In summary, SHP2 is a promising therapeutic target, and strategies targeting SHP2 offer an alternative program for cancer patients.
Asunto(s)
Inhibidores Enzimáticos , Neoplasias , Humanos , Inhibidores Enzimáticos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de SeñalRESUMEN
Proteolysis-targeting chimeras (PROTACs) as an emerging drug discovery modality has been extensively concerned in recent years. Over 20 years development, accumulated studies have demonstrated that PROTACs show unique advantages over traditional therapy in operable target scope, efficacy, and overcoming drug resistance. However, only limited E3 ligases, the essential elements of PROTACs, have been harnessed for PROTACs design. The optimization of novel ligands for well-established E3 ligases and the employment of additional E3 ligases remain urgent challenges for investigators. Here, we systematically summarize the current status of E3 ligases and corresponding ligands for PROTACs design with a focus on their discovery history, design principles, application benefits, and potential defects. Meanwhile, the prospects and future directions for this field are briefly discussed.
Asunto(s)
Descubrimiento de Drogas , Ubiquitina-Proteína Ligasas , Proteolisis , Ligandos , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Electrically driven multi-stable cholesteric liquid crystals can be used to adjust the transmittance of incident light. Compared with the traditional liquid crystal optical devices, the multi-stable devices only apply an electric field during switching and do not require a continuous electric field to maintain the various optical states of the device. Therefore, the multi-stable devices have low energy consumption and have become a research focus for researchers. However, the multi-stable devices still have shortcomings before practical application, such as contrast, switching time, and mechanical strength. In this article, the latest research progress on electrically driven multi-stable cholesteric liquid crystals is reviewed, including electrically driven multi-stable modes, performance optimization, and applications. Finally, the challenges and opportunities of electrically driven multi-stable cholesteric liquid crystals are discussed in anticipation of contributing to the development of multi-stable liquid crystal devices.
RESUMEN
Deformable superstructures are man-made materials with large deformation properties that surpass those of natural materials. However, traditional deformable superstructures generally use conventional materials as substrates, limiting their applications in multi-mode reconfigurable robots and space-expandable morphing structures. In this work, amine-acrylate-based liquid crystal elastomers (LCEs) are used as deformable superstructures substrate to provide high driving stress and strain. By changing the molar ratio of amine to acrylate, the thermal and mechanical properties of the LCEs are modified. The LCE with a ratio of 0.9 exhibited improved polymerization degree, elongation at break, and toughness. Besides an anisotropic finite deformation model based on hyperelastic theory is developed for the LCEs to capture the configuration variation under temperature activation. Built upon these findings, an LCE-based paper-cutting structure with negative Poisson's ratio and a 2D lattice superstructure model are combined, processed, and molded by laser cutting. The developed superstructure is pre-programmed to the configuration required for service conditions, and the deformation processes are analyzed using both experimental and finite element methods. This study is expected to advance the application of deformable superstructures and LCEs in the fields of defense and military, aerospace, and bionic robotics.
RESUMEN
Sodium sulfate decahydrate (Na2SO4.10H2O, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO2), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms. The ESC of PCMs deteriorated when thickeners, SPA, PPA, and CNF, were added. DSS-modified PCMs exhibited greater stability up to 150 cycles. Rheology measurements indicated that DSS did not impact SSD viscosity significantly during stabilization. Dynamic light scattering showed that DSS reduces SSD particle size and electrostatically suspends salt particles in a stable homogeneous solution, avoiding phase separation. This study proposes a promising method to improve the thermal stability of salt hydrate PCMs by utilizing polyelectrolyte-salt hydrate mixture for thermal energy storage applications.
RESUMEN
Triple-negative breast cancer (TNBC) is a leading malignancy among women that currently lack effective targeted therapeutic agents, and the limitations of treatment have prompted the emergence of new strategies. Methuosis is a novel vacuole-presenting cell death modality that promotes tumor cell death. Hence, a series of pyrimidinediamine derivatives were designed and synthesized through evaluation of their abilities that inhibit proliferation as well as induce methuosis against TNBC cells. Among them, JH530 showed excellent anti-proliferative activities and vacuolization capacity in TNBC. The mechanism research indicated that JH530 caused cell death through inducing methuosis of cancer cells. Furthermore, JH530 inhibited tumor growth remarkably in the HCC1806 xenograft model without an apparent decrease in body weight. Overall, JH530 is a methuosis inducer that displayed remarkable suppression of TNBC growth in vitro and in vivo, which provides a basis for the future progress of more small molecules for TNBC treatment.