Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 140: 279-291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331508

RESUMEN

Methane is one of the major greenhouse gases (GHGs) and agriculture is recognized as its primary emitter. Methane accounting is a prerequisite for developing effective agriculture mitigation strategies. In this review, methane accounting methods and research status for various agricultural emission source including rice fields, animal enteric fermentation and livestock and poultry manure management were overview, and the influencing factors of each emission source were analyzed and discussed. At the same time, it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation. Finally, mitigation strategies based on accounting results and actual situation are proposed. This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.


Asunto(s)
Gases de Efecto Invernadero , Metano , Animales , Agricultura/métodos , Metano/análisis , Óxido Nitroso/análisis , Aves de Corral , Ganado
2.
Microb Pathog ; 164: 105446, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35167954

RESUMEN

Streptococcus mutans (S. mutans) is the most important oral pathogenic bacterial cause of dental caries. Here we investigated the abilities of probiotic lactobacillus strains of Lactobacillus curvatus (L. curvatus) BSF206 and Pediococcus pentosaceus (P. pentosaceus) AC1-2 to control S. mutans. Both probiotic strains are acid and bile salt tolerant and are resistant to hydrogen peroxide and lysozyme to promote their survival within the oral environment. In addition, both strains are highly hydrophobic and are also capable of engaging in electrostatic interactions. These properties enhance abilities of both strains to adhere to gingival epithelial cells and HT-29 for improved colonization of oral tissues, while also enabling these probiotics auto-aggregate and to form aggregates with S. mutans that both may prevent S. mutans from colonizing oral tissues and facilitate the clearance of the cariogenic bacteria from the mouth during swallowing of food and saliva. Furthermore, results presented herein revealed that L. curvatus BSF206 and P. pentosaceus AC1-2 effectively inhibited S. mutans activities (biofilm formation, secretion of extracellular matrix components, synthesis of water-insoluble glucans) and led to downregulation of expression of key S. mutans genes involved in biofilm production (gtfA, gtfB, ftf, brpA). Taken together, these results indicate that L. curvatus BSF206 and P. pentosaceus AC1-2 can inhibit S. mutans biofilm formation as a new strategy for preventing dental caries.


Asunto(s)
Caries Dental , Probióticos , Antibacterianos/farmacología , Biopelículas , Caries Dental/prevención & control , Humanos , Lactobacillus/fisiología , Pediococcus pentosaceus , Probióticos/farmacología , Streptococcus mutans
3.
J Environ Manage ; 302(Pt B): 114121, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801865

RESUMEN

Data gaps in satellite aerosol optical depth (AOD) retrievals pose a huge challenge in near real-time air quality assessment. Here, we present a multimodal aerosol data fusion approach to integrate multisource AOD and air quality data for the generation of full coverage AOD maps at hourly resolution. Specifically, data gaps in each Himawari-8 AOD snapshot were partially filled by merging all available daytime AOD snapshots, and these partially gap-filled AOD maps were then fused with coarse yet spatially complete numerical AOD simulations to generate full coverage AOD imageries. Ground-based air quality measurements, including concentrations of PM2.5, PM10, NO2, and SO2, were simultaneously assimilated into gridded AOD fields to enhance the overall data accuracy. A practical implementation of the proposed method was illustrated by generating hourly full-coverage AOD maps in China from 2015 to 2020, and the validation results indicate this new AOD dataset agreed well with ground-based AOD measurements (R = 0.83), from which a ubiquitous AOD decreasing trend was revealed, especially during the noontime. Moreover, the hourly resolution and full-coverage advantages of this AOD dataset allow us to better assess spatiotemporal variations of PM10 and PM2.5 pollution that occurred in China. Overall, the proposed method paves a new way as big data analytics to advance regional air pollution assessment given the full coverage capacity and enhanced accuracy of the resulting AOD and PM concentration data.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exactitud de los Datos , Monitoreo del Ambiente , Material Particulado/análisis
4.
Appl Opt ; 60(24): 7186-7199, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613006

RESUMEN

The Directional Polarimetric Camera (DPC) is the first Chinese multi-angle polarized Earth observation satellite sensor, which was successfully launched on 9 May 2018, onboard the GaoFen-5 satellite in the Chinese High-Resolution Earth Observation Program. The DPC's observation is one of the most important space-borne multi-spectral, multi-angular polarimetric measurements of the global Earth-atmosphere system at the present stage. Although rigorous radiometric calibration had been performed for the DPC before launch, its in-flight performance may change because of the process of launch, harsh environment of space, and aging of the sensor. Due to the absence of the onboard calibration system, vicarious calibration methods are necessary for the DPC's in-flight performance monitoring and calibration. In this paper, we adapted the Rayleigh absolute calibration method, the sun glint inter-band calibration method, and the sun glint polarization calibration method to the DPC sensor. First, the calibration errors of these three methods caused by ancillary data uncertainties (e.g., aerosol, chlorophyll concentration, absorption gases amount, and wind speed) were analyzed in detail. The error budgets show that the aerosol parameters (optical thickness and aerosol model) are some of the critical factors affecting both the radiometric and polarimetric calibration accuracies for the Rayleigh and sun glint methods. The DPC radiometric and polarimetric in-flight calibration during its commissioning phase was then implemented. The absolute coefficients of short spectral bands (443, 490, 565, and 670 nm) were calibrated by the well-characterized Rayleigh scattering signal over the ocean. Using the 565 nm band as a reference band, the Rayleigh absolute calibration was then transferred to other bands (443, 490, 670, and 865 nm) through inter-band calibration using the specular reflection of the sun over the ocean. The polarization measurements of the DPC at polarized bands (490, 670, and 865 nm) were calibrated with the polarized reflection of the sun glint over ocean. The preliminary results show that the radiometric sensitivity of the DPC changed very little after launch at the four visible bands. The absolute calibration coefficient differences from pre-flight calibration are smaller than 0.5% at the 443 and 670 nm bands, while they are within ±2% at the 490 and 565 nm bands. However, a large deviation at 865 nm band of about 9% from pre-flight calibration was indicated by the sun glint inter-band calibration. The degree of linear polarization measurement of the DPC is validated with high accuracy of about 0.02 at the 865 nm band, while the deviation at 490 and 670 nm bands are relatively larger, reaching 0.04. The DPC/GaoFen-5 shows a good in-flight performance of radiometric measurement and generally reliable polarimetric measurement after launch.

5.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494216

RESUMEN

Rare-earth labeling in biological apatite could provide critical information for the pathologic transition (osteoclastic) and physiologic regeneration (osteogenesis) of bone and teeth because of their characteristic site-sensitive fluorescence in different coordinative conditions of various tissues in many biological processes. However, the rare-earth labeling method for biological apatites, i.e., carbonated-hydroxyapatite, has been rarely found in the literature. In this paper, we report a Pourbaix-diagram guided mineralizing strategy to controllable carbonation and doping of rare-earth ions in the hydroxyapatite (HA) lattice. The carbonation process of hydroxyapatite was achieved by controllable mineralization in hydrothermal condition with K2CO3 as the carbonate source, which results into the pure B-type carbonated hydroxyapatite (CHA) with tunable carbonate substitution degree. All of the as-synthesized materials crystalized into P63/m (No. 176) space group with the lattice parameter of a decreases and c increases with the increasing of carbonate content in the reactants. Structural refinement results revealed that the substitution of planar CO32- is superimposed on one of the faces of PO43- tetrahedral sub-units with a rotation angle of 30° in reference to c-axis. All of the hydrothermally synthesized CHA nanocrystals show hexagonal rod-like morphology with the length of 70-110 nm and diameter of 21-35 nm, and the decreasing length/diameter ratio from 3.61 to 2.96 from low to high carbonated level of the samples. Five rare-earth cations, of Pr3+, Sm3+, Eu3+, Tb3+, and Ho3+, were used as possible probe ions that can be doped into either HA or CHA lattice. The site-preference of Tb3+ doping is the same in the crystallographic site of HA and CHA according to characteristic emission peaks of 5D4-7Fj (j = 3-6) transitions in their photoluminescent spectroscopy. Our work provides a controllable carbonation method for rare-earth labeling hydroxyapatite nanomaterials with potential biologically active implant powders for bone repair and tissue regeneration.


Asunto(s)
Sustitutos de Huesos/química , Durapatita/química , Metales de Tierras Raras/química , Nanopartículas/química , Animales , Sustitutos de Huesos/farmacología , Línea Celular , Durapatita/farmacología , Mediciones Luminiscentes , Metales de Tierras Raras/farmacología , Ratones
6.
BMC Oral Health ; 20(1): 113, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299394

RESUMEN

BACKGROUND: Myxofibrosarcoma (MFS) is a soft tissue sarcoma that commonly occurs in late adult life. It is mainly located in the subcutaneous soft tissues of extremities characterized by a high recurrence rate at the original site. MFS of the head and neck is rare, while it occurs in the maxilla and mandible is extremely rare. CASE PRESENTATION: We report a case of MFS of the mandible in a 51-year-old female who presented with a painless gingival swelling and mobile, super-erupted right mandibular second and third molars. Panoramic x-ray and maxillofacial CT revealed an ill-defined radiolucent lesion surrounding the mandibular molars giving a teeth-floating-in-air appearance. Histopathological examination showed scattered spindle and stellate cells with mild atypia distributed in the myxoid stroma. Only a few mitotic figures were identified and no area of tissue necrosis was found. The characteristic thin-walled and curvilinear vasculature were prominent. Immunohistochemistry analysis revealed the tumor cells being positive for vimentin and vascular CD31. CK, S-100, P63, HHF-35 stains were negative. The labeling index of Ki-67 was about 30%. Based on the histopathological and immunohistochemical examinations, the diagnosis of a low-grade MFS was established. This patient underwent a radical segmental excision with a 2-cm margin, supraomohyoid neck dissection and immediate reconstruction of the mandibular continuity defect with a fibular osteocutaneous free flap. This patient has been followed for 20 months to date and has remained disease free. CONCLUSIONS: This report describes a rare case of MFS of the mandible. Recognizing the histopathological features of MFS and applying the appropriate immunohistochemical examinations are crucial in establishing the correct diagnosis. Our case may provide diagnosis and treatment experiences of MFS occurs in the mandible.


Asunto(s)
Fibrosarcoma/diagnóstico , Mandíbula/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/diagnóstico , Femenino , Fibrosarcoma/cirugía , Humanos , Inmunohistoquímica , Mandíbula/patología , Persona de Mediana Edad , Radiografía Panorámica , Neoplasias de los Tejidos Blandos/cirugía
7.
Appl Opt ; 58(6): 1475-1484, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30874032

RESUMEN

In this paper, we investigate the effects of shape distribution of aerosol particles on the volumetric scattering properties, as well as the radiance and polarization distributions of skylight, by numerical simulations. The results demonstrate that the shape distribution indeed exerts a significant influence on the skylight degree of linear polarization. The skylight polarization calculated assuming the microscope-measured shape distributions is distinct from that using the inversion-based shape distributions. The significant effects will influence the retrieval of the sphericity of aerosols based on the sun-sky radiometer measurements. Our results suggest that using representative shape distributions obtained by direct microscopic observations of aerosol samples captured in the natural atmosphere has a high potential to improve the retrieval of the aerosol shape parameter.

8.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443288

RESUMEN

Lung tissues are frequently exposed to a hyperoxia environment, which leads to oxidative stress injuries. Hydrogen sulfide (H2S) is widely implicated in physiological and pathological processes and its antioxidant effect has attracted much attention. Therefore, in this study, we used hydrogen peroxide (H2O2) as an oxidative damage model to investigate the protective mechanism of H2S in lung injury. Cell death induced by H2O2 treatment could be significantly attenuated by the pre-treatment of H2S, resulting in a decrease in the Bax/Bcl-2 ratio and the inhibition of caspase-3 activity in human lung epithelial cell line A549 cells. Additionally, the results showed that H2S decreased reactive oxygen species (ROS), as well as neutralized the damaging effects of H2O2 in mitochondria energy-producing and cell metabolism. Pre-treatment of H2S also decreased H2O2-induced suppression of endogenous H2S production enzymes, cystathionine-beta-synthase (CBS), cystathionine-gamma-lyase (CSE), and 3-mercapto-pyruvate sulfurtransferase (MPST). Furthermore, the administration of H2S attenuated [Ca2+] overload and endoplasmic reticulum (ER) stress through the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, H2S might be a potential therapeutic agent for reducing ROS and ER stress-associated apoptosis against H2O2-induced lung injury.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Sulfuro de Hidrógeno/farmacología , Células A549 , Apoptosis/efectos de los fármacos , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Molecules ; 25(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906165

RESUMEN

Methods to remove dye pollutants with natural enzyme, like horseradish peroxidase (HRP), are still limited due to high costs and low stability levels. The development of such a method with similar enzymatic activity is important and could be helpful in wastewater disposal. A metal organic framework material, Fe-loaded MOF-545 (Fe), was synthesized in our study as a new way to remove dyes due to its peroxidase-like activity. The structural characterizations of Fe-loaded MOF-545(Fe) was investigated using scanning electron microscopy (SEM), UV-Vis absorption spectra, and X-ray diffraction (XRD). The peroxidase-like (POD-like) activity of Fe-loaded MOF-545(Fe) was investigated under different pH and temperature conditions. Because of the Fe added into the MOF-545 structure, the absorption of Fe-loaded MOF-545(Fe) for acid (anionic) dyes (methyl orange (MO)) was better than for basic (cationic) dyes (methylene blue (MB)). The Fe-loaded MOF-545(Fe) could give a significant color fading for MO and MB over a short time (about two hours) with peroxidase-like activity. The remarkable capacity of Fe-loaded MOF-545(Fe) to remove the MO or MB is due to not only physical adsorption, but also degradation of the MO and MB with POD-like activity. Therefore, Fe-loaded MOF-545(Fe) has significant potential regarding dye removal from wastewater.


Asunto(s)
Colorantes/química , Hierro/química , Estructuras Metalorgánicas/química , Aguas Residuales/química , Descoloración del Agua , Adsorción , Compuestos Azo/química , Concentración de Iones de Hidrógeno , Cinética , Estructuras Metalorgánicas/ultraestructura , Azul de Metileno/química , Oxidación-Reducción , Peroxidasas , Espectrofotometría , Temperatura , Contaminantes Químicos del Agua/química , Difracción de Rayos X
10.
Chemistry ; 24(31): 7845-7851, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29572988

RESUMEN

The diverse functionalities of large N-heteroacenes continue to be developed in terms of their strategic synthesis and application in the organic electronic field. Here, we report a novel large stable pyrene-containing N-heteroacene with ten linearly-annulated rings in one row. Remarkably, it exhibited excellent tri-state resistive memory property, which held great promise to achieve ultrahigh-density data storage. To the best of our knowledge, it is the first demonstration of organic multistate memory device based on large N-heteroacene (n≥10), which provides guidelines for designing more proof-of-concept larger N-heteroacene-based memory electronics.

11.
Int J Med Sci ; 15(12): 1415-1422, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275770

RESUMEN

Bone formation occurs by two distinct mechanisms, namely, periosteal ossification and endochondral ossification. In both mechanisms, osteoblasts play an important role in the secretion and mineralization of bone-specific extracellular matrix. Differentiation and maturation of osteoblasts is a prerequisite to bone formation and is regulated by many factors. Recent experiments have shown that transcription factors play an important role in regulating osteoblast differentiation, proliferation, and function. Osteogenesis related transcription factors are the central targets and key mediators of the function of growth factors, such as cytokines. Transcription factors play a key role in the transformation of mesenchymal progenitor cells into functional osteoblasts. These transcription factors are closely linked with each other and in conjunction with bone-related signaling pathways form a complex network that regulates osteoblast differentiation and bone formation. In this paper, we discuss the structure of T-cell factor/lymphoid enhancer factor (TCF/LEF) and its role in embryonic skeletal development and the crosstalk with related signaling pathways and factors.


Asunto(s)
Osteoblastos , Osteogénesis , Linfocitos T , Factores de Transcripción TCF/fisiología , Diferenciación Celular , Humanos , Factor de Unión 1 al Potenciador Linfoide , beta Catenina
12.
Appl Opt ; 57(5): 1011-1018, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29469880

RESUMEN

Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

13.
Pharm Dev Technol ; 23(6): 573-586, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27824281

RESUMEN

Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, or Soluplus®, is a relatively new copolymer and a promising carrier of amorphous solid dispersions. Knowledge on the inherent properties of Soluplus® (e.g. cloud points, critical micelle concentrations, and viscosity) in different conditions is relatively inadequate, and the application characteristics of Soluplus®-based solid dispersions made by microwave methods still need to be clarified. In the present investigation, the inherent properties of a Soluplus® carrier, including cloud points, critical micelle concentrations, and viscosity, were explored in different media and in altered conditions. Ibuprofen, a BCS class II non-steroidal anti-inflammatory drug, was selected to develop Soluplus®-based amorphous solid dispersions using the microwave-quench cooling (MQC) method. Scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Raman spectroscopy (RS), and Fourier transform infrared spectroscopy (FT-IR) were adopted to analyze amorphous properties and molecular interactions in ibuprofen/Soluplus® amorphous solid dispersions generated by MQC. Dissolution, dissolution extension, phase solubility, equilibrium solubility, and supersaturated crystallization inhibiting experiments were performed to elucidate the effects of Soluplus® on ibuprofen in solid dispersions. This research provides valuable information on the inherent properties of Soluplus® and presents a basic understanding of Soluplus® as a carrier of amorphous solid dispersions.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Ibuprofeno/administración & dosificación , Polietilenglicoles/química , Polivinilos/química , Antiinflamatorios no Esteroideos/química , Cristalización , Ibuprofeno/química , Micelas , Microondas , Transición de Fase , Solubilidad , Viscosidad , Difracción de Rayos X
14.
AAPS PharmSciTech ; 20(1): 12, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30560388

RESUMEN

The collective impact of cellulosic polymers on the dissolution, solubility, and crystallization inhibition of amorphous active pharmaceutical ingredients (APIs) is still far from being adequately understood. The goal of this research was to explore the influence of cellulosic polymers and incubation conditions on enhancement of solubility and dissolution of amorphous felodipine, while inhibiting crystallization of the drug from a supersaturated state. Variables, including cellulosic polymer type, amount, ionic strength, and viscosity, were evaluated for effects on API dissolution/solubility and crystallization processes. Water-soluble cellulosic polymers, including HPMC E15, HPMC E5, HPMC K100-LV, L-HPC, and MC, were studied. All cellulosic polymers could extend API dissolution and solubility to various extents by delaying crystallization and prolonging supersaturation duration, with their effectiveness ranked from greatest to least as HPMC E15 > HPMC E5 > HPMC K100-LV > L-HPC > MC. Decreased polymer amount, lower ionic strength, or higher polymer viscosity tended to decrease dissolution/solubility and promote crystal growth to accelerate crystallization. HPMC E15 achieved greatest extended API dissolution and maintenance of supersaturation from a supersaturated state; this polymer thus had the greatest potential for maintaining sustainable API absorption within biologically relevant time frames.


Asunto(s)
Felodipino/química , Cristalización , Polímeros/química , Solubilidad , Viscosidad
15.
IUBMB Life ; 69(7): 500-509, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28419719

RESUMEN

The purpose of this study is to probe the spectroscopic evidences of toxic trans-crotonaldehyde (TCA) trapped and transformed by resveratrol (Res) to prevent the damage of mitochondrial DNA. In aldehyde dehydrogenase (ALDH) at the different pH or mitochondria, the spectroscopic characteristics of TCA trapped and transformed by Res were observed by means of both UV-vis and Raman spectra. When Res interacted with TCA, TCA peak at 316 nm immediately disappeared while Res main peak at 305 nm and shoulder peak at 320 nm were dramatically changed, Raman peaks of TCA at 1,688 cm-1 assigned to CHO and 1,641 cm-1 affiliated to CC were strikingly shifted, Raman peaks of Res itself were significantly displaced or disappeared, especially in mitochondria and ALDH at different pH. The active groups of Res were the OH at C5 and C10 . The results of theoretical calculations are in agreement on the whole with the experimental data. The Res plays undoubtedly an important role via the structural change in TCA. The toxic CHO of TCA was effectively trapped and transformed by Res by means of itself OH at C5 and C10 . The mitochondrial alkaline microenvironment and ALDH promoted the elimination of toxic TCA. © 2017 IUBMB Life, 69(7):500-509, 2017.


Asunto(s)
Aldehídos/química , ADN Mitocondrial/química , Estilbenos/química , Aldehído Deshidrogenasa/química , Aldehídos/metabolismo , Animales , Daño del ADN , ADN Mitocondrial/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Ratas Wistar , Resveratrol , Espectrofotometría Ultravioleta , Espectrometría Raman , Estilbenos/farmacología
16.
Opt Express ; 25(16): A813-A823, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041048

RESUMEN

Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

17.
Molecules ; 22(3)2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28264511

RESUMEN

ß-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a "fish-in-net" approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy were used to characterise the silica matrix hosting the two enzymes. Both encapsulated ß-galactosidase and bound lysozyme exhibited high enzymatic activities and outstanding operational stability in model reactions. Moreover, enzyme activities of the co-immobilised enzymes did not obviously change relative to enzymes immobilised separately. In antibacterial tests, bound lysozyme exhibited 95.5% and 89.6% growth inhibition of Staphylococcus aureus ATCC (American type culture collection) 653 and Escherichia coli ATCC 1122, respectively. In milk treated with co-immobilised enzymes, favourable results were obtained regarding reduction of cell viability and high lactose hydrolysis rate. In addition, when both co-immobilised enzymes were employed to treat milk, high operational and storage stabilities were observed. The results demonstrate that the use of co-immobilised enzymes holds promise as an industrial strategy for producing low lactose milk to benefit people with lactose intolerance.


Asunto(s)
Antiinfecciosos/química , Lactosa/química , Muramidasa/química , Dióxido de Silicio/química , beta-Galactosidasa/química , Animales , Antiinfecciosos/farmacología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Escherichia coli/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Microscopía Electrónica de Rastreo , Leche/química , Impresión Molecular , Muramidasa/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X , beta-Galactosidasa/farmacología
18.
J Chem Inf Model ; 56(8): 1539-46, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27472561

RESUMEN

Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.


Asunto(s)
Electricidad , Simulación de Dinámica Molecular , Transporte Biológico , Membrana Celular/metabolismo , Conformación Molecular , Termodinámica
19.
Appl Opt ; 55(27): 7624-30, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27661591

RESUMEN

The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.

20.
Yao Xue Xue Bao ; 51(3): 462-8, 2016 03.
Artículo en Zh | MEDLINE | ID: mdl-29859030

RESUMEN

This study aims to explore the characteristics of crystallization inhibition by cellulose polymers at the supersaturated states of drugs. The study was performed by simulating supersaturated process and preparing supersaturated drug solid, and was carried out by measuring the content of drugs at different time points using dissolution apparatus. The types, amounts, ionic intensity and viscosity of cellulose polymers were examined to assess the crystallization inhibition effect on BCS II class drug indomethacin. HPMC E15 exhibited the strongest crystallization inhibition effect. The more added, more obvious crystallization suppression was observed against indomethacin. The decrease in viscosity and increase in ionic intensity led to an enhanced inhibition. The research provides a scientific guide for the crystallization inhibition of supersaturated drug by cellulose polymers.


Asunto(s)
Celulosa/química , Composición de Medicamentos , Indometacina/química , Polímeros/química , Cristalización , Solubilidad , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA