Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 393-401, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-38953263

RESUMEN

Cardiovascular diseases,such as coronary heart disease (CHD),are the main causes of death in humans.Cardiac rehabilitation with exercise therapy as the core contents is a rehabilitation program specially designed for the patients with cardiovascular diseases,aiming to help the patients improve their physical functions and return to social activities as soon as possible.Active cardiac rehabilitation can not only reduce the morbidity and mortality of CHD and improve the cardiopulmonary function of patients but also reduce the medical and economic burden.This article summarizes the effect of physical function on CHD patients,the current application mode of exercise therapy in cardiac rehabilitation,and the formulation principles of different exercise prescriptions in cardiac rehabilitation,aiming to provide a reference for the application of exercise therapy in CHD patients.


Asunto(s)
Enfermedad Coronaria , Terapia por Ejercicio , Humanos , Terapia por Ejercicio/métodos , Enfermedad Coronaria/rehabilitación , Enfermedad Coronaria/prevención & control , Enfermedad Coronaria/terapia , Rehabilitación Cardiaca/métodos
2.
Biochem Biophys Res Commun ; 674: 170-182, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37423037

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proliferación Celular/genética , Neoplasias Encefálicas/patología , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
3.
J Am Chem Soc ; 144(34): 15779-15785, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35976107

RESUMEN

Distinct regio- and enantioselectivity control in copper-catalyzed vinylogous and bisvinylogous propargylic substitution has been accomplished by using a novel chiral N,N,P ligand. The developed method provides an efficient and selective approach to an array of highly enantioenriched alkynyl unsaturated carbonyl compounds. Salient features include excellent functional group tolerance and broad substrate scope. The synthetic utility of the developed method is further demonstrated by a gram-scale synthesis and by application to a range of transformations including enantioselective synthesis of unique challenging compounds.


Asunto(s)
Cobre , Catálisis , Cobre/química , Ligandos , Estructura Molecular , Estereoisomerismo
4.
Cancer Cell Int ; 21(1): 598, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743716

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression. METHODS: shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG. RESULTS: We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients. CONCLUSION: In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression.

5.
PLoS Comput Biol ; 15(5): e1006846, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31048911

RESUMEN

The origin of avian flight is one of the most controversial debates in Paleontology. This paper investigates the wing performance of Caudipteryx, the most basal non-volant dinosaur with pennaceous feathered forelimbs by using modal effective mass theory. From a mechanical standpoint, the forced vibrations excited by hindlimb locomotion stimulate the movement of wings, creating a flapping-like motion in response. This shows that the origin of the avian flight stroke should lie in a completely natural process of active locomotion on the ground. In this regard, flapping in the history of evolution of avian flight should have already occurred when the dinosaurs were equipped with pennaceous remiges and rectrices. The forced vibrations provided the initial training for flapping the feathered wings of theropods similar to Caudipteryx.


Asunto(s)
Dinosaurios/fisiología , Vuelo Animal/fisiología , Alas de Animales/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Aves/fisiología , Dinosaurios/anatomía & histología , Plumas , Miembro Anterior/fisiología , Fósiles , Miembro Posterior/fisiología , Locomoción , Movimiento (Física) , Filogenia , Alas de Animales/anatomía & histología
6.
Cancer Cell Int ; 17: 35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286417

RESUMEN

BACKGROUND: Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. METHODS: Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by ß-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. RESULTS: Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. ß-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. CONCLUSIONS: We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

7.
Cancer Cell Int ; 15: 44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26136641

RESUMEN

BACKGROUND: Wilms' tumor (WT) is one of the most common malignant neoplasms of the urinary tract in children. Anaplastic histology (unfavorable histology) accounts for about 10% of whole WTs, and it is the single most important histologic predictor of treatment response and survival in patients with WT; however, until now the molecular basis of this phenotype is not very clearly. METHODS: A real-time polymerase chain reaction (PCR) array was designed and tested. Next, the gene expression profile of pediatric anaplastic histology WT and normal adjacent tissues were analyzed. These expression data were anlyzed with Multi Experiment View (MEV) cluster software further. Datasets representing genes with altered expression profiles derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool (IPA). RESULTS: 88 real-time PCR primer pairs for quantitative gene expression analysis of key genes involved in pediatric anaplastic histology WT were designed and tested. The gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal controls; we identified 15 genes that are up-regulated and 16 genes that are down-regulated in the former. To investigate biological interactions of these differently regulated genes, datasets representing genes with altered expression profiles were imported into the IPA for further analysis, which revealed three significant networks: Cancer, Hematological Disease, and Gene Expression, which included 27 focus molecules and a significance score of 43. The IPA analysis also grouped the differentially expressed genes into biological mechanisms related to Cell Death and Survival 1.15E(-12), Cellular Development 2.84E(-11), Cellular Growth and Proliferation 2.84E(-11), Gene Expression 4.43E(-10), and DNA Replication, Recombination, and Repair 1.39E(-07). The important upstream regulators of pediatric anaplastic histology WT were TP53 and TGFß1 signaling (P = 1.15E(-14) and 3.79E(-13), respectively). CONCLUSIONS: Our study demonstrates that the gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal tissues with real-time PCR array. We identified some genes that are dysregulated in pediatric anaplastic histology WT for the first time, such as HDAC7, and IPA analysis showed the most important pathways for pediatric anaplastic histology WT are TP53 and TGFß1 signaling. This work may provide new clues into the molecular mechanisms behind pediatric anaplastic histology WT.

8.
BMC Cancer ; 15: 756, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490736

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. METHODS: Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. RESULTS: MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). CONCLUSIONS: Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis revealed significantly shorter overall survival in pediatric AML with GATA4 promoter methylation but multivariate analysis shows that it is not an independent factor. However, further research focusing on the mechanism of GATA4 in pediatric leukemia is required.


Asunto(s)
Metilación de ADN/genética , Factor de Transcripción GATA4/genética , Leucemia Mieloide Aguda/genética , Pronóstico , Adolescente , Niño , Preescolar , Islas de CpG/genética , Femenino , Factor de Transcripción GATA4/biosíntesis , Regulación Leucémica de la Expresión Génica , Células HL-60 , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/patología , Masculino , Regiones Promotoras Genéticas
9.
Int J Mol Sci ; 16(1): 1266-92, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25574601

RESUMEN

Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.


Asunto(s)
Apoptosis/efectos de los fármacos , Azepinas/toxicidad , Proteínas de Ciclo Celular/antagonistas & inhibidores , Leucemia Mieloide Aguda/patología , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirimidinas/toxicidad , Azepinas/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Análisis por Conglomerados , Fragmentación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Células HL-60 , Humanos , Células K562 , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirimidinas/química , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos , Quinasa Tipo Polo 1
10.
J Transl Med ; 12: 182, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24962166

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear. METHODS: Eleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis. RESULTS: The MT3 promoter was hypermethylated in leukemia cell lines. More CpG's methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P < 0.001); patients with methylated MT3 exhibited lower levels of MT3 expression compared to those with unmethylated MT3 (P = 0.049). After transfection with MT3 lentivirus, proliferation was significantly inhibited in AML cells in a dose-dependent manner (P < 0.05). Annexin V assay showed that apoptosis was significantly upregulated MT3-overexpressing AML cells compared to controls. Real-time PCR array analysis revealed 34 dysregulated genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1. CONCLUSION: MT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells, offering an insight into the mechanism of MT3-induced apoptosis. However, further research is required to determine the underlying molecular details.


Asunto(s)
Metilación de ADN , Genes Supresores de Tumor , Leucemia Mieloide Aguda/genética , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Adolescente , Secuencia de Bases , Línea Celular Tumoral , Niño , Preescolar , Cartilla de ADN , Femenino , Humanos , Lactante , Leucemia Mieloide Aguda/patología , Masculino , Metalotioneína 3 , Reacción en Cadena de la Polimerasa
11.
Beijing Da Xue Xue Bao Yi Xue Ban ; 46(2): 226-31, 2014 Apr 18.
Artículo en Zh | MEDLINE | ID: mdl-24743811

RESUMEN

OBJECTIVE: To obtain the baseline data and decision of quantitative analysis for the allocation of scarce health care resources,and for the health policymaking about easing the disease burden, to provide estimation of the economic costs and the disability-adjusted life years (DALYs) loss of the coal worker's pneumoconiosis (CWP) and to explore the influencing factors of the disease burden. METHODS: The CWP inpatients from the Institute of Occupational Diseases Prevention and Control of a Coal Mining Group for 2011 were recruited in the study. Multiple dimensions of the disease burden were measured in the inception cohort of the 194 CWP inpatients: the direct economic burden, the indirect economic burden and the DALYs loss. The direct economic burden of the inpatients included hospitalization expenses and food allowances and nutritional supplements. The indirect economic burden was estimated using the DALYs and human capital approach,and the influencing factors of hospitalization expenses were analyzed in this study. RESULTS: The estimated direct economic burden for the 194 CWP inpatients for 2011 was approximately 4.68 million yuan and direct burden per capita was 24 108.05 yuan, and their indirect burden about 6.98 million yuan and indirect burden per capita 35 977.36 yuan. The study discovered that 1 681.53 health years were lost for the CWP inpaitents and per capita health years loss (8.67±3.65) years. CONCLUSION: The medical cost, the indirect cost and the DALYs loss of CWP are all sizable. Age and length of stay in the hospital are the major influencing factors for high hospitalization expenses. The hospitalization expenses of the CWP inpatients increase with their age and length of stay in the hospital. Taking effective measures to reduce the morbility is the key point to reduce the CWP burden.


Asunto(s)
Antracosis/epidemiología , Costo de Enfermedad , Costos y Análisis de Costo , Humanos , Pacientes Internos , Años de Vida Ajustados por Calidad de Vida
12.
Neuro Oncol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864832

RESUMEN

BACKGROUND: Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS: The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS: The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2 and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSION: Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of NB susceptibility gene ALK.

13.
Huan Jing Ke Xue ; 44(10): 5757-5768, 2023 Oct 08.
Artículo en Zh | MEDLINE | ID: mdl-37827791

RESUMEN

To explore the effect of exogenous plant hormone spraying on the absorption of heavy metals by hyperaccumulated plants, Bidens pilosa L. was selected as the tested plant owing to the large biomass, short growth cycle, and high accumulation efficiency. Here, the effect of foliar spraying 6-benzylaminopurine (6-BA), salicylic acid (SA), and 24-epi-brassinosteroid (24-EBR) on the remediation of cadmium (Cd)-contaminated soil by B. pilosa L. was examined. The results showed:① the efficiency of the remediation in Cd-contaminated soil by B. pilosa L. was effectively enhanced after the spraying of all three kinds of exogenous plant hormones with appropriate concentrations. The spraying of the three exogenous plant hormones could promote the cadmium concentration in the leaves of B. pilosa L. to increase by 4.21%, 31.79%, and 14.89%; promote the translocation factor (TF) to increase by 9.67%, 18.83%, and 17.85%; promote the phytoextraction rates (PR) to increase by 15.36%, 32.33%, and 64.38%, respectively. ② The growth of B. pilosa L. was significantly promoted after the spraying of the three kinds of exogenous plant hormones with appropriate concentrations. The spraying of the three exogenous plant hormones could promote plant growth under cadmium stress, and the dry weight of the plant root, stem, and leaf was increased by 37.53%, 74.50%, and 104.02%, respectively. ③ The photosynthesis of B. pilosa L. was significantly enhanced after the spraying of the three kinds of exogenous plant hormones with appropriate concentrations. The chlorophyll concentration of the plant was significantly increased after foliar spraying with plant hormones, and the concentration of chlorophyll a was increased by 79.31%, 92.27%, and 51.12%; the photochemical quenching coefficient (qP) was increased by 11.32%, 89.16%, and 78.43%; and the non-photochemical quenching coefficient (NPQ) was increased by 51.71%, 241.12%, and 27.85%, respectively, after foliar spraying with appropriate concentrations of 6-BA, SA, and 24-EBR. ④ The antioxidant capacity of B. pilosa L. was significantly strengthened after the spraying of the three kinds of exogenous plant hormones with appropriate concentrations. The malondialdehyde (MDA) concentration of the plant was reduced by 62.41%, 68.67%, and 46.76% after the application of 6-BA, SA, and 24-EBR, respectively. Meanwhile, superoxide dismutase (SOD) was increased by 68.33%, 10.28%, and 6.17%, and catalase (CAT) was increased by 31.43%, 37.87%, and 37.31%, respectively. Generally, the spraying of exogenous 6-BA, SA, and 24-EBR with the appropriate concentration under Cd stress could significantly increase the biomass of B. pilosa L. and promote the accumulation of heavy metals in the plant, improve the photosynthetic ability of the plant, reduce the oxidative damage of the plant under heavy metal stress, enhance the antioxidant capacity, and improve the absorption and tolerance of plants to Cd. It also could promote the transfer of Cd from roots to shoots, improve the phytoextraction rates of Cd from the plant, and effectively strengthen the phytoremediation efficiency. Among them, 30 mg·L-1 SA foliar spraying had the best effect.


Asunto(s)
Bidens , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Antioxidantes , Clorofila A , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis , Raíces de Plantas/química
14.
Colloids Surf B Biointerfaces ; 217: 112655, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35785715

RESUMEN

Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.


Asunto(s)
Antígeno CD47 , Neoplasias , Humanos , Inmunoterapia , Metaloproteinasa 2 de la Matriz , Neoplasias/patología , Neoplasias/terapia , Péptidos , Fagocitosis , Microambiente Tumoral
15.
J Hazard Mater ; 424(Pt C): 127509, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736185

RESUMEN

Antibiotic residues from animal manure cause soil pollution and can pose a threat to soil animals. In this study, the toxicological effects of fluoroquinolone antibiotics on Enchytraeus crypticus, including defence response, gut microbiome, and antibiotic resistance genes (ARGs), were studied. The cytochrome P450 enzyme activity and reactive oxygen species levels increased, activating the defense response. The superoxide dismutase and glutathione S-transferase activity, and the expression of immune defense molecules such as coelomic cytolytic factor, lysozyme, bactericidal protein fetidins and lysenin changed. Furthermore, the diversity of the gut microbiome decreased, and the relative abundance of Bacteroidetes decreased significantly at the phylum level but increased in pathogenic and antibiotic-secreting bacteria (Rhodococcus and Streptomyces) at the genus level. However, the soil microbiome was not significantly different from that of the control group. The relative abundance of ARGs in the gut and soil microbiome significantly increased with enrofloxacin concentration, and the fluoroquinolone ARGs were significantly increased in both the soil (20.85-fold, p < 0.001) and gut (11.72-fold, p < 0.001) microbiomes. Subtypes of ARGs showed a positive correlation with Rhodococcus, which might increase the risk of disease transmission and the probability of drug-resistant pathogens. Furthermore, mobile genetic elements significantly promote the spread of ARGs.


Asunto(s)
Microbioma Gastrointestinal , Oligoquetos , Animales , Antibacterianos/toxicidad , Farmacorresistencia Microbiana/genética , Fluoroquinolonas/toxicidad , Genes Bacterianos , Estiércol , Suelo , Microbiología del Suelo
16.
Int J Chron Obstruct Pulmon Dis ; 17: 1537-1552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811742

RESUMEN

Purpose: Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods: Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results: COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-ß, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1-2 group vs Gold 3-4 group). The worse the patient's condition, the more pronounced the change. Conclusion: This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Surfactantes Pulmonares , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Biomarcadores , Ratones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Proteína A Asociada a Surfactante Pulmonar/uso terapéutico , Proteína D Asociada a Surfactante Pulmonar/análisis , Proteína D Asociada a Surfactante Pulmonar/uso terapéutico , Surfactantes Pulmonares/uso terapéutico
17.
Ann Clin Lab Sci ; 52(6): 956-966, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36564069

RESUMEN

OBJECTIVE: The long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) is considered a carcinogenic promoter in various human malignancies. However, the role and underlying mechanism of action of CRNDE during carcinogenesis in neuroblastoma remain unknown. METHODS: CRNDE transcript levels were detected in neuroblastoma tissues and adjacent normal tissues. The effects of CRNDE overexpression and knockdown on the viability of SH-SY5Y and SK-N-AS cells were determined using the Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was performed to measure the role of CRNDE in apoptosis and the cell cycle in neuroblastoma cells. Moreover, the transwell assay was used to evaluate the role of CRNDE in the migration and invasion of tumor cells. The levels of ERK/MAPK pathway-related proteins were evaluated using western blotting. The in vivo role of CRNDE in tumor growth and apoptosis was evaluated in a xenograft mouse model of human neuroblastoma. RESULTS: The relative expression of CRNDE was significantly higher in neuroblastoma tissues than in the adjacent normal tissues. Moreover, knockdown of CRNDE inhibited tumor cell proliferation and induced apoptosis and cell cycle arrest, whereas elevation of CRNDE promoted cell growth and inhibited apoptosis in neuroblastoma cells. In addition, depletion of CRNDE suppressed migration and invasion, whereas overexpression of CRNDE enhanced the migratory and invasive potential of SH-SY5Y and SK-N-AS cells. At the mechanistic level, western blotting showed that CRNDE exerted its oncogenic role by affecting the ERK/MAPK signaling pathway. Furthermore, animal experiments confirmed that CRNDE promotes tumor growth and inhibits apoptosis in neuroblastoma in vivo. CONCLUSION: The present study revealed that CRNDE plays a critical role in the proliferation, apoptosis, migration, and invasion of neuroblastoma by altering the ERK/MAPK signaling pathway, representing a novel molecular target for the treatment of neuroblastoma.


Asunto(s)
MicroARNs , Neuroblastoma , ARN Largo no Codificante , Humanos , Animales , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinógenos , Línea Celular Tumoral , Neuroblastoma/genética , Transducción de Señal/genética , Carcinogénesis/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética
18.
Cell Death Dis ; 13(2): 174, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197448

RESUMEN

Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.


Asunto(s)
Factor de Transcripción E2F7 , Neuroblastoma , Proteínas Nucleares , Transporte Activo de Núcleo Celular , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
19.
J Immunol Res ; 2022: 7945884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438198

RESUMEN

Neuroblastoma (NB) is the most common solid tumor of the neural crest cell origin in children and has a poor prognosis in high-risk patients. The oncogene MYCN was found to be amplified at extremely high levels in approximately 20% of neuroblastoma cases. In recent years, research on the targeted hydrolysis of BRD4 to indirectly inhibit the transcription of the MYCN created by proteolysis targeting chimaera (PROTAC) technology has become very popular. dBET57 (S0137, Selleck, TX, USA) is a novel and potent heterobifunctional small molecule degrader based on PROTAC technology. The purpose of this study was to investigate the therapeutic effect of dBET57 in NB and its potential mechanism. In this study, we found that dBET57 can target BRD4 ubiquitination and disrupt the proliferation ability of NB cells. At the same time, dBET57 can also induce apoptosis, cell cycle arrest, and decrease migration. Furthermore, dBET57 also has a strong antiproliferation function in xenograft tumor models in vivo. In terms of mechanism, dBET57 targets the BET protein family and the MYCN protein family by associating with CRBN and destroys the SE landscape of NB cells. Combined with RNA-seq and ChIP-seq public database analysis, we identified the superenhancer-related genes TBX3 and ZMYND8 in NB as potential downstream targets of dBET57 and experimentally verified that they play an important role in the occurrence and development of NB. In conclusion, these results suggest that dBET57 may be an effective new therapeutic drug for the treatment of NB.


Asunto(s)
Neuroblastoma , Proteínas Nucleares , Niño , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/uso terapéutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
20.
J Exp Clin Cancer Res ; 41(1): 225, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842703

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a myeloid neoplasm makes up 7.6% of hematopoietic malignancies. Super-enhancers (SEs) represent a special group of enhancers, which have been reported in multiple cell types. In this study, we explored super-enhancer profiling through ChIP-Seq analysis of AML samples and AML cell lines, followed by functional analysis. METHODS: ChIP-seq analysis for H3K27ac was performed in 11 AML samples, 7 T-ALL samples, 8 B-ALL samples, and in NB4 cell line. Genes and pathways affected by GNE-987 treatment were identified by gene expression analysis using RNA-seq. One of the genes associated with super-enhancer and affected by GNE-987 treatment was LYL1 basic helix-loop-helix family member (LYL1). shRNA mediated gene interference was used to down-regulate the expression of LYL1 in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. RESULTS: We identified a total of 200 genes which were commonly associated with super-enhancers in ≧10 AML samples, and were found enriched in regulation of transcription. Using the BRD4 inhibitor GNE-987, we assessed the dependence of AML cells on transcriptional activation for growth and found GNE-987 treatment predominantly inhibits cell growth in AML cells. Moreover, 20 candidate genes were selected by super-enhancer profile and gene expression profile and among which LYL1 was observed to promote cell growth and survival in human AML cells. CONCLUSIONS: In summary, we identified 200 common super-enhancer-associated genes in AML samples, and a series of those genes are cancer genes. We also found GNE-987 treatment downregulates the expression of super-enhancer-associated genes in AML cells, including the expression of LYL1. Further functional analysis indicated that LYL1 is required for AML cell growth and survival. These findings promote understanding of AML pathophysiology and elucidated an important role of LYL1 in AML progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Leucemia Mieloide Aguda , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular , Niño , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA