RESUMEN
Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.
Asunto(s)
Encéfalo , Transcriptoma , Humanos , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Mesencéfalo , Neocórtex , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismoRESUMEN
BACKGROUND: The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS: This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS: In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.
Asunto(s)
Arabidopsis , Cromatina , Animales , Humanos , Cromatina/genética , Histonas , Arabidopsis/genética , Lámina Nuclear , Regulación de la Expresión Génica , Proteínas NuclearesRESUMEN
The chiral recognition and separation of enantiomers are of great importance for biological research and the pharmaceutical industry. Preparing homochiral materials with adjustable size and chiral binding sites is beneficial for achieving an efficient chiral recognition performance. Here, a homochiral covalent organic framework membrane modified with ß-cyclodextrin (CD-COF) was constructed, which was subsequently utilized as an electrochemical sensor for the enantioselective sensing of tryptophan (Trp) molecules. The preferential adsorption of l-Trp over d-Trp at the ß-CD sites can enhance the surface charge density and hydrophilicity of the CD-COF membrane, resulting in an increased transmembrane ionic current. Trp enantiomers with concentrations down to 0.28 nM can be effectively discriminated. The l-/d-Trp recognition selectivity increases with the Trp concentration and reaches a value of 19.2 at 1 mM. The selective adsorption of l-Trp to the CD-COF membrane will also hinder its transport, resulting in a l-/d-Trp permeation selectivity of 15.3. This study offers a new strategy to construct homochiral porous membranes and achieve efficient chiral sensing and separation.
RESUMEN
Lamins are the major components of the nuclear lamina, which regulate chromatin structure and gene expression. KAKU4 is a unique nuclear lamina component in the nuclear periphery, modulates nuclear shape and size in Arabidopsis. The knowledge about the regulatory role of KAKU4 in leaf development remains limited. Here we found that knockdown of KAKU4 resulted in an accelerated leaf senescence phenotype, with elevated levels of H2O2 and hormones, particularly SA, JA, and ABA. Our results demonstrated the importance of KAKU4 as a potential negative regulator in age-triggered leaf senescence in Arabidopsis. Furthermore, we conducted combination analyses of transcriptomic and epigenomic data for the kaku4 mutant and WT leaves. The knockdown of KAKU4 lowered H3K27me3 deposition in the up-regulated genes associated with hormone pathways, programmed cell death, and leaf senescence, including SARD1, SAG113/HAI1, PR2, and so forth. In addition, we found the functional crosstalks between KAKU4 and its associated proteins (CRWN1/4, PNET2, GBPL3, etc.) through comparing multiple transcriptome datasets. Overall, our results indicated that KAKU4 may inhibit the expression of a series of genes related to hormone signals and H2O2 metabolism by affecting the deposition of H3K27me3, thereby suppressing leaf senescence.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Histonas , Peróxido de Hidrógeno , Senescencia de la Planta , HormonasRESUMEN
Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.
RESUMEN
Two dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes (2 and 3) were designed and applied in amyloid-ß (Aß) sensing. These complexes have a general formula of [Ru(phen)(dppz)(L)](PF6)2, where L is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-L) with different substituents (-OMe for 2, -H for 3), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe 1 with a di(pyrid-2-yl)(methyl)amine ligand, complex 2 can be employed for not only ratiometric emissive detection of Aß aggregation but also ratiometric imaging detection of Aß fibrils. In ratiometric emissive detection, as the incubation time of the Aß sample (Aß40 and Aß42) was prolonged, a new phosphorescence emission band appeared with gradual enhancement of the emission intensity, while the fluorescence emission was basically unchanged, which could be treated as an intrinsic internal reference signal. In comparison, a larger ratiometric photoluminescence enhancement (I640/I440) was observed for Aß40 aggregation with respect to Aß42. In ratiometric imaging detection, the imaging signals obtained from the phosphorescence emission are much brighter than the fluorescence emission in both Aß40 and Aß42 fibrils. As indicated by molecular docking results, stronger interactions were found between complex 2 with Aß40 fibrils, which included π/π, π/C-H, and π/H interactions between bidentate ligands dppz and phen with amino acid residues. Moreover, computational calculations were carried out to assist the interpretation of these experimental findings.
Asunto(s)
Péptidos beta-Amiloides , Complejos de Coordinación , Rutenio , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/análisis , Rutenio/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Simulación del Acoplamiento Molecular , Imagen Óptica , Fragmentos de Péptidos/química , Fragmentos de Péptidos/análisisRESUMEN
Because global anthropogenic activities cause vast biodiversity loss, human dimensions research is essential to forming management plans applicable to biodiversity conservation outside wilderness areas. Engaging public participation is crucial in this context to achieve social and environmental benefits. However, knowledge gaps remain in understanding how a balance between conservation and public demands can be reached and how complicated sociocultural contexts in the Anthropocene can be incorporated in conservation planning. We examined China's nationwide conflict between free-ranging cats (owned cats that are allowed to go outdoors or homeless cats living outdoors) and wildlife to examine how a consensus between compassion and biodiversity conservation can help in decision-making. We surveyed a random sample of people in China online. Over 9000 questionnaires were completed (44.2% response). In aggregate, respondents reported approximately 29 million free-ranging owned cats and that over 5 million domestic cats per year become feral in mainland China. Respondents who were cat owners, female, and religious were more likely to deny the negative impacts of cats on wildlife and ongoing management strategies and more supportive of stray cat shelters, adoption, and community-based fund raising than nonowners, male, and nonreligious respondents (p < 0.05). Free-ranging cat ownership and abandonment occurred less with owners with more knowledge of biodiversity and invasive species than with respondents with less knowledge of these subjects (p < 0.05). We recommend that cat enthusiasts and wildlife conservationists participate in community-based initiatives, such as campaigns to keep cats indoors. Our study provides a substantially useful framework for other regions where free-ranging cats are undergoing rapid expansion.
Retos y oportunidades de las dimensiones humanas detrás del conflicto entre gatos y fauna Resumen Debido a que las actividades antropogénicas globales causan una enorme pérdida de la biodiversidad, la investigación sobre las dimensiones humanas es esencial para generar planes de manejo aplicables a la conservación de la biodiversidad fuera de las áreas silvestres. Es muy importante lograr que el público participe en este contexto para obtener los beneficios sociales y ambientales. Sin embargo, todavía existen vacíos en el conocimiento sobre cómo lograr el balance entre la conservación y las demandas públicas y cómo incorporar los contextos socioculturales complejos del Antropoceno a la planeación de la conservación. Analizamos el conflicto nacional entre los gatos libres (gatos callejeros o gatos domésticos que se les permite salir) y la fauna en China para estudiar cómo un consenso entre la compasión y la conservación de la biodiversidad puede ayudar en la toma de decisiones. Encuestamos en línea a una muestra aleatoria de personas en China. Se completaron más de 9000 cuestionarios (44.2% de respuesta). En total, los respondientes reportaron un aproximado de 29 millones de gatos libres y que más de cinco millones de gatos domésticos se vuelven ferales al año en China. Quienes respondieron y son dueños de gatos, mujeres y religiosos tuvieron la mayor probabilidad de negar los impactos negativos de los gatos sobre la fauna y de las estrategias actuales de manejo y de mostrar más apoyo por los refugios de gatos abandonados, la adopción y de la recaudación de fondos comunitaria que quienes no son dueños, no son religiosos y son hombres (p < 0.05). La propiedad de gatos libres y el abandono ocurrieron menos con los dueños con más conocimiento sobre la biodiversidad y las especies invasoras que con los respondientes con menos conocimiento sobre estos temas (p < 0.05). Recomendamos que los aficionados a los gatos y los conservacionistas de la fauna participen en las iniciativas comunitarias; por ejemplo, campañas para mantener a los gatos dentro de casa. Nuestro estudio proporciona un marco sustancialmente útil para otras regiones en donde los gatos libres se encuentran en rápida expansión.
Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Propiedad , Conservación de los Recursos Naturales/métodos , Animales , Gatos/fisiología , China , Humanos , Biodiversidad , Masculino , Femenino , Encuestas y CuestionariosRESUMEN
Recent concerns have emerged regarding the improper disposal of spent lithium-ion batteries (LIBs), which has garnered widespread societal attention. Graphite materials accounted for 12-21 wt % of LIBs' mass, typically contain heavy metals, binders, and residual electrolytes. Regenerating spent graphite not only alleviated the shortage of plumbago, but also contributed to the supports environmental protection as well as national carbon peak and neutrality ("dual carbon" goals). Despite significant advancements in recycling spent LIBs had been made, a comprehensive overview of the processes for pretreatment, regeneration, and functionalization of spent graphite from retired LIBs, along with the associated technical standards and industry regulations enabling their smooth implementation still needed to be mentioned. Hence, we conducted the following research work. Firstly, the pre-treatment process of spent graphite, including discharging, crushing, and screening was summed up. Next,. Subsequently, graphite recovery methods, such as acid leaching, pyrometallurgy, and combined methods were summarized. Moreover, the modification and doping approach was used to enhance the electrochemical properties of graphite. Afterwards, we reviewed the functionalization of anode graphite from an economically and environmentally friendly view. Meanwhile, the technical standards and industry regulations of spent LIBs in domestic and oversea industries were described. Finally, we provided an overview of the technical challenges and development bottlenecks in graphite recycling, along with future prospects Overall, this study outlined the opportunities and challenges in recovering and functionalizing of anode materials via a efficient and sustainable processes.
Asunto(s)
Grafito , Litio , Reciclaje/métodos , Iones , Suministros de Energía Eléctrica , ElectrodosRESUMEN
With the accumulation of massive data sets from high-throughput experiments and the rapid emergence of new types of omics data, gene sets have become more diverse and essential for the refinement of gene annotation at multidimensional levels. Accordingly, we collected and defined 236 007 gene sets across different categories for 44 plant species in the Plant Gene Set Annotation Database (PlantGSAD). These gene sets were divided into nine main categories covering many functional subcategories, such as trait ontology, co-expression modules, chromatin states, and liquid-liquid phase separation. The annotations from the collected gene sets covered all of the genes in the Brassicaceae species Arabidopsis and Poaceae species Oryza sativa. Several GSEA tools are implemented in PlantGSAD to improve the efficiency of the analysis, including custom SEA for a flexible strategy based on customized annotations, SEACOMPARE for the cross-comparison of SEA results, and integrated visualization features for ontological analysis that intuitively reflects their parent-child relationships. In summary, PlantGSAD provides numerous gene sets for multiple plant species and highly efficient analysis tools. We believe that PlantGSAD will become a multifunctional analysis platform that can be used to predict and elucidate the functions and mechanisms of genes of interest. PlantGSAD is publicly available at http://systemsbiology.cau.edu.cn/PlantGSEAv2/.
Asunto(s)
Bases de Datos Genéticas , Anotación de Secuencia Molecular , Plantas/clasificación , Programas Informáticos , Cromatina/genética , Plantas/genéticaRESUMEN
Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560â nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480â nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.
RESUMEN
Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors among different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex is assembled into highly-polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt···Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rod). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of Y-rod. With the aid of a patterned mask, R-rod is further programmed into multi-block PPHs with precisely-controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of intramolecular and intermolecular excited states is critical for the construction of these PPHs.
RESUMEN
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
RESUMEN
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4ß, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Asunto(s)
Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported. Its distinct chiral binding cavity enables more sensitive discrimination of tryptophan (Trp) enantiomer pairs than other smaller chiral amino acids owing to its size matching to the target molecule. It is found that introducing neighboring aldehyde groups into the chiral cavity will result in an inferior chiral Trp recognition due to the decreased adsorption-energy difference of D- and L-Trp on the chiral sites. This study may provide an alternative strategy for designing efficient chiral recognition devices by utilizing the homochiral reticular materials and tailoring their chiral environments.
RESUMEN
This review centers on a closed bipolar electrode (BPE) array using an electro-fluorochromism (EFC) or electro-chemiluminescence (ECL) reaction as the reporting reaction. Electrochemical signals at one pole of the closed BPE array can be transduced into the EFC or ECL signals at the opposite pole. Therefore, the current signal of a redox reaction can be easily detected and imaged by monitoring the luminescence signal. Recent developments in closed BPE array-based EFC and ECL sensing and imaging are summarized and discussed in detail. Finally, we consider the challenges and opportunities for improving the spatial resolution of closed BPE array-based electrochemical imaging, and emphasize the important application of this technique to the imaging of cellular activities at the single-cell level.
RESUMEN
In predator-prey interactions, various factors affect the prey's perception of risk and decision to flee. Gaze sensitivity, the ability to react to the presence, direction, or movement of the head and eyes, has been reported in many birds. However, few studies have focussed on variation in sensitivity to human gaze in relation to other risks and potential breeding costs. Here, we studied the influence of human gaze on the escape behaviour of Azure-winged magpies (Cyanopica cyanus) and investigated the effects of breeding state (breeding season and nonbreeding season) and approach direction on gaze sensitivity. In Experiment 1, we tested whether magpies showed different sensitivities to human gaze according to age class and breeding state when approached directly. The results showed that the breeding state could affect the flight initiation distance (FID), with adults in the breeding season having a shorter FID compared to those in the nonbreeding season. Meanwhile, only adults were found to be averse to direct human gaze and juveniles showed no sensitivity. In Experiment 2, we conducted three different gaze treatments on adult magpies in the breeding season under three bypass distances (0 m, 2.5 m, 5 m). The results showed that approach direction had no effect on FID, while the sensitivity to human gaze differed under three bypass distances. Adults could clearly recognise human head and eye direction at a certain bypass distance (2.5 m). Our study reveals the cognitive ability of Azure-winged magpies to human head and eye direction and the effects of age, breeding state and approach direction, which may provide further insights into human-wildlife interactions, especially for birds in urban habitats.
Asunto(s)
Passeriformes , Humanos , Animales , Cognición , Conducta Predatoria , Cruzamiento , Fijación OcularRESUMEN
Brain lateralization, a trait ubiquitous in vertebrates and invertebrates, refers to structural differences between the left and right sides of the brain or to the left and right sides controlling different functions or processing information in different ways. Many studies have looked into the advantages of lateralized brains and discovered that cerebral lateralization confers a fitness advantage. Enhancing cognitive ability has been proposed as one of the potential benefits of the lateralized brain, however, this has not been widely validated. In this study, we investigated the handedness of 34 subjects from four groups of Callitrichids, as well as their performance in two inhibitory control tasks (the revised A-not-B task and the cylinder task). The subjects had strong individual hand preferences, and only a few zoo-born individuals were ambidextrous. Sex and generation influence the strength of hand preference. In the cylinder task, the subjects showed differences between groups, and the performance of the second-generation was better than that of the first-generation. We found that neither the strength of hand preferences (ABS-HI) or direction of hand preferences (HI) was linked with success on the two inhibitory tasks. That is, we were unable to support the enhanced cognitive function hypothesis. We believe that individual ontogeny and the type of cognitive task have an impact on the support of this hypothesis. The advantages of lateralized brain may be reflected in tests that require multiple cognitive abilities.
Asunto(s)
Encéfalo , Lateralidad Funcional , Animales , Cognición , Mapeo Encefálico/veterinariaRESUMEN
BACKGROUND: Partial liver transplantation has recently been proposed to alleviate organ shortages. However, transplantation of a small-for-size graft is associated with an increased risk of posttransplant hepatic dysfunction, commonly referred to as small-for-size syndrome (SFSS). This review describes the etiology, pathological features, clinical manifestations, and diagnostic criteria of SFSS. Moreover, we summarize strategies to improve graft function, focusing on graft inflow modulation techniques. Finally, unmet needs and future perspectives are discussed. SUMMARY: In fact, posttransplant SFSS can be attributed to various factors such as preoperative status of the recipients, surgical techniques, donor age, and graft quality, except for graft size. With targeted improvement measures, satisfactory clinical outcomes can be achieved in recipients at increased risk of SFSS. Given the critical role of relative portal hyperperfusion in the pathogenesis of SFSS, various pharmacological and surgical treatments have been established to reduce or partially divert excessive portal inflow, and recipients will benefit from individualized therapeutic regimens after careful evaluation of benefits against potential risks. However, there remain unmet needs for further research into different aspects of SFSS to better understand the correlation between portal hemodynamics and patient outcomes. KEY MESSAGES: Contemporary transplant surgeons should consider various donor and recipient factors and develop case-specific prevention and treatment strategies to improve graft and recipient survival rates.
Asunto(s)
Hepatopatías , Trasplante de Hígado , Humanos , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Donantes de Tejidos , Hemodinámica , Hígado , Tamaño de los Órganos , Supervivencia de InjertoRESUMEN
Subtilases (SBTs), which belong to the serine peptidases, control plant development by regulating cell wall properties and the activity of extracellular signaling molecules, and affect all stages of the life cycle, such as seed development and germination, and responses to biotic and abiotic environments. In this study, 146 Gossypium hirsutum, 138 Gossypium barbadense, 89 Gossypium arboreum and 84 Gossypium raimondii SBTs were identified and divided into six subfamilies. Cotton SBTs are unevenly distributed on chromosomes. Synteny analysis showed that the members of SBT1 and SBT4 were expanded in cotton compared to Arabidopsis thaliana. Co-expression network analysis showed that six Gossypium arboreum SBT gene family members were in a network, among which five SBT1 genes and their Gossypium hirsutum and Arabidopsis thaliana direct homologues were down-regulated by salt treatment, indicating that the co-expression network might share conserved functions. Through co-expression network and annotation analysis, these SBTs may be involved in the biological processes of auxin transport, ABA signal transduction, cell wall repair and root tissue development. In summary, this study provides valuable information for the study of SBT genes in cotton and excavates SBT genes in response to salt stress, which provides ideas for cotton breeding for salinity resistance.
Asunto(s)
Arabidopsis , Gossypium , Gossypium/metabolismo , Familia de Multigenes , Arabidopsis/genética , Fitomejoramiento , Genoma de Planta , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genéticaRESUMEN
The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.