RESUMEN
BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.
Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Masculino , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Anciano , Pronóstico , Variaciones en el Número de Copia de ADN/genética , Mutación/genética , Inestabilidad de MicrosatélitesRESUMEN
Machine learning is an emerging tool in clinical psychology and neuroscience for the individualized prediction of psychiatric symptoms. However, its application in non-clinical populations is still in its infancy. Given the widespread morphological changes observed in psychiatric disorders, our study applies five supervised machine learning regression algorithms-ridge regression, support vector regression, partial least squares regression, least absolute shrinkage and selection operator regression, and Elastic-Net regression-to predict anxiety and depressive symptom scores. We base these predictions on the whole-brain gray matter volume in a large non-clinical sample (n = 425). Our results demonstrate that machine learning algorithms can effectively predict individual variability in anxiety and depressive symptoms, as measured by the Mood and Anxiety Symptoms Questionnaire. The most discriminative features contributing to the prediction models were primarily located in the prefrontal-parietal, temporal, visual, and sub-cortical regions (e.g. amygdala, hippocampus, and putamen). These regions showed distinct patterns for anxious arousal and high positive affect in three of the five models (partial least squares regression, support vector regression, and ridge regression). Importantly, these predictions were consistent across genders and robust to demographic variability (e.g. age, parental education, etc.). Our findings offer critical insights into the distinct brain morphological patterns underlying specific components of anxiety and depressive symptoms, supporting the existing tripartite theory from a neuroimaging perspective.
Asunto(s)
Depresión , Sustancia Gris , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Depresión/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ansiedad/diagnóstico por imagen , Ansiedad/psicología , AfectoRESUMEN
Color centers in diamond have widespread utility in quantum technologies, but their creation process remains stochastic in nature. Deterministic creation of color centers in device-ready diamond platforms can improve the yield, scalability, and integration. Recent work using pulsed laser excitation has shown impressive progress in deterministically creating defects in bulk diamond. Here, we extend this laser-writing process into nanophotonic devices etched into diamond membranes, including nanopillars and photonic resonators with writing and subsequent readout occurring in situ at cryogenic temperatures. We demonstrate the optically driven creation of carbon vacancy (GR1) and nitrogen vacancy (NV) centers in diamond nanopillars and observe enhanced photoluminescence collection from them. We also fabricate bullseye resonators and leverage their cavity modes to locally amplify the laser-writing field, yielding defect creation with picojoule write-pulse energies 100 times lower than those typically used in bulk diamond demonstrations.
RESUMEN
A fundamental question in the study of happiness is whether there is neural evidence to support a well-known hypothesis that happy people are always similar while unfortunate people have their own misfortunes. To investigate this, we employed several happiness-related questionnaires to identify potential components of happiness, and further investigated and confirmed their associations with personality, mood, aggressive behaviors, and amygdala reactivity to fearful faces within a substantial sample size of college students (n = 570). Additionally, we examined the functional and morphological similarities and differences among happy individuals using the inter-subject representational similarity analysis (IS-RSA). IS-RSA emphasizes the geometric properties in a high-dimensional space constructed by brain or behavioral patterns and focuses on individual subjects. Our behavioral findings unveiled two factors of happiness: individual and social, both of which mediated the effect of personality traits on individual aggression. Subsequently, mood mediated the impact of happiness on aggressive behaviors across two subgroup splits. Functional imaging data revealed that individuals with higher levels of happiness exhibited reduced amygdala reactivity to fearful faces, as evidenced by a conventional face-matching task (n = 104). Moreover, IS-RSA demonstrated that these participants manifested similar neural activation patterns when processing fearful faces within the visual pathway, but not within the emotional network (e.g., amygdala). Morphological observations (n = 425) indicated that individuals with similar high happiness levels exhibited comparable gray matter volume patterns within several networks, including the default mode network, fronto-parietal network, visual network, and attention network. Collectively, these findings offer early neural evidence supporting the proposition that happy individuals may share common neural characteristics.
Asunto(s)
Encéfalo , Expresión Facial , Felicidad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Reconocimiento Facial/fisiología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/anatomía & histología , Personalidad/fisiología , Afecto/fisiología , Miedo/fisiología , Agresión/fisiología , Adolescente , Mapeo Encefálico/métodosRESUMEN
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
RESUMEN
BACKGROUND: Mutations in the KEAP1-NFE2L2 signaling pathway were linked to increased tumorigenesis and aggressiveness. Interestingly, not all hotspot mutations on NFE2L2 were damaging; some even were activating. However, there was conflicting evidence about the association between NFE2L2 mutation and Nrf2-activating mutation and responsiveness to immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and other multiple cancers. METHODS: The study with the largest sample size (n = 49,533) explored the landscape of NFE2L2 mutations and their impact response/resistance to ICIs using public cohorts. In addition, the in-house WXPH cohort was used to validate the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. RESULTS: In two pan-cancer cohorts, Nrf2-activating mutation was associated with higher TMB value compared to wild-type. We identified a significant association between Nrf2-activating mutation and shorter overall survival in pan-cancer patients and NSCLC patients but not in those undergoing ICIs treatment. Similar findings were obtained in cancer patients carrying the NFE2L2 mutation. Furthermore, in NSCLC and other cancer cohorts, patients with NFE2L2 mutation demonstrated more objective responses to ICIs than patients with wild type. Our in-house WXPH cohort further confirmed the efficacy of immunotherapy in the NFE2L2 mutated patients with NSCLC. Lastly, decreased inflammatory signaling pathways and immune-depleted immunological microenvironments were enriched in Nrf2-activating mutation patients with NSCLC. CONCLUSIONS: Our study found that patients with Nrf2-activating mutation had improved immunotherapy outcomes than patients with wild type in NSCLC and other tumor cohorts, implying that Nrf2-activating mutation defined a distinct subset of pan-cancers and might have implications as a biomarker for guiding ICI treatment, especially NSCLC.
RESUMEN
This study explored whether amygdala reactivity predicted the greed personality trait (GPT) using both task-based and resting-state functional connectivity analyses (ntotal = 452). In Cohort 1 (n = 83), task-based functional magnetic resonance imaging (t-fMRI) results from a region-of-interest (ROI) analysis revealed no direct correlation between amygdala reactivity to fearful and angry faces and GPT. Instead, whole-brain analyses revealed GPT to robustly negatively vary with activations in the right ventromedial prefrontal cortex (vmPFC), supramarginal gyrus, and angular gyrus in the contrast of fearful + angry faces > shapes. Moreover, task-based psychophysiological interaction (PPI) analyses showed that the high GPT group showed weaker functional connectivity of the vmPFC seed with a top-down control network and visual pathways when processing fearful or angry faces compared to their lower GPT counterparts. In Cohort 2, resting-state functional connectivity (rs-FC) analyses indicated stronger connectivity between the vmPFC seed and the top-down control network and visual pathways in individuals with higher GPT. Comparing the two cohorts, bilateral amygdala seeds showed weaker associations with the top-down control network in the high group via PPI analyses in Cohort 1. Yet, they exhibited distinct rs-FC patterns in Cohort 2 (e.g., positive associations of GPT with the left amygdala-top-down network FC but negative associations with the right amygdala-visual pathway FC). The study underscores the role of the vmPFC and its functional connectivity in understanding GPT, rather than amygdala reactivity.
Asunto(s)
Mapeo Encefálico , Emociones , Humanos , Emociones/fisiología , Mapeo Encefálico/métodos , Corteza Prefrontal/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética , Personalidad , Vías Nerviosas/diagnóstico por imagenRESUMEN
Color centers in diamond are widely explored as qubits in quantum technologies. However, challenges remain in the effective and efficient integration of these diamond-hosted qubits in device heterostructures. Here, nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth. These membranes have tunable thicknesses (demonstrated 50 to 250 nm), are deterministically transferable, have bilaterally atomically flat surfaces (Rq ≤ 0.3 nm), and bulk-diamond-like crystallinity. Color centers are synthesized via both implantation and in situ overgrowth incorporation. Within 110-nm-thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition line widths as low as 125 MHz. The room temperature spin coherence of individual nitrogen-vacancy (NV-) centers shows Ramsey spin dephasing times (T2*) and Hahn echo times (T2) as long as 150 and 400 µs, respectively. This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
Asunto(s)
Teoría Cuántica , Nitrógeno/químicaRESUMEN
Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.
RESUMEN
Filamentation dynamics in fused silica are investigated using an Airy pattern and a Gaussian laser beam. The angle-resolved conical emission spectra are measured and compared with the predictions of several models. Our experimental observations are consistent with the X-waves model in both cases. This indicates that both laser beams spontaneously evolve into nonlinear X-waves and suggests a universal evolution of filaments in fused silica, regardless of the initial laser beam profile.
RESUMEN
Chemotherapy including platinum-based drugs are a possible strategy to enhance the immune response in advanced melanoma patients who are resistant to immune checkpoint blockade (ICB) therapy. However, the immune-boosting effects of these drugs are a subject of controversy, and their impact on the tumor microenvironment are poorly understood. In this study, we discovered that lipid peroxidation (LPO) promotes the formation of lipid rafts in the membrane, which mediated by Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) impairs the sensitivity of melanoma cells to platinum-based drugs. This reduction primarily occurs through the inhibition of immunogenic ferroptosis and pyroptosis by reducing cell membrane pore formation. By disrupting ACSL4-mediaged lipid rafts via the removal of membrane cholesterol, we promoted immunogenic cell death, transformed the immunosuppressive environment, and improved the antitumor effectiveness of platinum-based drugs and immune response. This disruption also helped reverse the decrease in CD8+ T cells while maintaining their ability to secrete cytokines. Our results reveal that ACSL4-dependent LPO is a key regulator of lipid rafts formation and antitumor immunity, and that disrupting lipid rafts has the potential to enhance platinum-based drug-induced immunogenic ferroptosis and pyroptosis in melanoma. This novel strategy may augment the antitumor immunity of platinum-based therapy and further complement ICB therapy.
Asunto(s)
Coenzima A Ligasas , Muerte Celular Inmunogénica , Melanoma , Microdominios de Membrana , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Animales , Humanos , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Ferroptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Peroxidación de Lípido/efectos de los fármacos , Piroptosis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacosRESUMEN
Electroporation (in which the permeability of a cell membrane is increased transiently by exposure to an appropriate electric field) has exhibited great potential of becoming an alternative to adeno-associated virus (AAV)-based retina gene delivery. Electroporation eliminates the safety concerns of employing exogenous viruses and exceeds the limit of AAV cargo size. Unfortunately, several concerns (e.g., relatively high electroporation voltage, poor surgical operability and a lack of spatial selectivity of retina tissue) have prevented electroporation from being approved for clinical application (or even clinical trials). In this study, a flexible micro-electrode array for retina electroporation (FERE) was developed for retina electroporation. A suitably shaped flexible substrate and well-placed micro-electrodes were designed to adapt to the retina curvature and generate an evenly distributed electric field on the retina with a significantly reduced electroporation voltage of 5 V. The FERE provided (for the first time) a capability of controlled gene delivery to the different structural layers of retina tissue by precise control of the distribution of the electrical field. After ensuring the surgical operability of the FERE on rabbit eyeballs, the FERE was verified to be capable of transfecting different layers of retina tissue with satisfactory efficiency and minimum damage. Our method bridges the technical gap between laboratory validation and clinical use of retina electroporation.
Asunto(s)
Electroporación , Retina , Animales , Conejos , Electroporación/métodos , Electrodos , Técnicas de Transferencia de Gen , TransfecciónRESUMEN
Quantum information technology offers the potential to realize unprecedented computational resources via secure channels distributing entanglement between quantum computers. Diamond, as a host to optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend such quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential for an efficient interface between spins and photons that are used to store and communicate quantum information respectively. Here, we demonstrate one- and two-dimensional PhC cavities fabricated in thin-film diamonds, featuring quality factors (Q) of 1.8 × 105 and 1.6 × 105, respectively, the highest Qs for visible PhC cavities realized in any material. Importantly, our fabrication process is simple and high-yield, based on conventional planar fabrication techniques, in contrast to the previous with complex undercut processes. We also demonstrate fiber-coupled 1D PhC cavities with high photon extraction efficiency, and optical coupling between a single SiV center and such a cavity at 4 K achieving a Purcell factor of 18. The demonstrated photonic platform may fundamentally improve the performance and scalability of quantum nodes and expedite the development of related technologies.
RESUMEN
Diamond has superlative material properties for a broad range of quantum and electronic technologies. However, heteroepitaxial growth of single crystal diamond remains limited, impeding integration and evolution of diamond-based technologies. Here, we directly bond single-crystal diamond membranes to a wide variety of materials including silicon, fused silica, sapphire, thermal oxide, and lithium niobate. Our bonding process combines customized membrane synthesis, transfer, and dry surface functionalization, allowing for minimal contamination while providing pathways for near unity yield and scalability. We generate bonded crystalline membranes with thickness as low as 10 nm, sub-nm interfacial regions, and nanometer-scale thickness variability over 200 by 200 µm2 areas. We measure spin coherence times T2 for nitrogen vacancy centers in 150 nm-thick bonded membranes of up to 623 ± 21 µs, suitable for advanced quantum applications. We demonstrate multiple methods for integrating high quality factor nanophotonic cavities with the diamond heterostructures, highlighting the platform versatility in quantum photonic applications. Furthermore, we show that our ultra-thin diamond membranes are compatible with total internal reflection fluorescence (TIRF) microscopy, which enables interfacing coherent diamond quantum sensors with living cells while rejecting unwanted background luminescence. The processes demonstrated herein provide a full toolkit to synthesize heterogeneous diamond-based hybrid systems for quantum and electronic technologies.
RESUMEN
Glycoprotein (GP) Ibα ectodomain shedding has important implications for thrombosis and hemostasis. A disintegrin and metalloproteinase 17 (ADAM17) was identified to play an essential role in agonist induced GPIbα shedding. The relationship of GPIbα shedding and ADAM17 in the acute stage of atherosclerotic ischemic stroke (AIS) patients has not been thoroughly studied. A total of 306 patients and 230 controls matched for age, sex, race, history of hypertension and diabetes mellitus were enrolled in the study. GPIbα, ADAM17, glycocalicin were detected by flow cytometry, Western blotting, and enzyme-linked immunosorbent assay (ELISA) respectively. Compared with the control group, the expression of GPIbα in patients with acute ischemic stroke was significantly lower (P=0.000, P<0.01). Plasma glycocalicin and ADAM17 in AIS group were higher than those in control group (P=0.699, P=0.000). Pearson's analysis showed glycocalicin bore no correlation with GPIbα in AIS patients (r=0.095, P>0.05). GPIbα and National Institute of Health Stroke Scale (NIHSS) had negative correlation (r=-0.514, P<0.01). Our findings indicate that ADAM17 may be a risk factor for ischemic stroke in Chinese and the expression of GPIbα can serve as a measure for stroke severity.
Asunto(s)
Proteínas ADAM/sangre , Plaquetas/metabolismo , Isquemia Encefálica/sangre , Arteriosclerosis Intracraneal/sangre , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/sangre , Proteína ADAM17 , Biomarcadores/sangre , Isquemia Encefálica/diagnóstico , China , Femenino , Humanos , Arteriosclerosis Intracraneal/diagnóstico , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Accidente Cerebrovascular/diagnósticoRESUMEN
The fundamental purpose of this study is to conduct an inquiry into the efficacy of China's green credit strategy, and that is the core focus of the investigation. As part of this study, we investigate whether or not businesses that increase the environmental transparency of their operations to the outside world and green innovation within their operations are rewarded with more favorable bank loan terms as a direct result of receiving green credit. Specifically, we look at whether or not these businesses are awarded green credit. Our hypothesis is put to the test by using difference-in-differences (DID) model and the data that was collected from a sample of 1086 publicly traded Chinese manufacturers over the years 2012 to 2017. According to the data, businesses that improve the quality of their environmental disclosures do not receive an increase in their access to corporate finance. On the other hand, businesses that introduce new environmentally friendly (tourism) breakthroughs do receive an increase in their access to corporate finance. Our research demonstrates that the root of the problem is corporate greenwashing, a practice that is common in regions with low environmental disclosure standards and makes it more difficult for businesses to obtain new loans. This practice is popular in areas where environmental disclosure standards are lax. This is the most basic explanation for why the phenomena occur in the first place. Our findings contribute to the literature on themes including green credit policy, corporate green innovation, environmental transparency, and green financing and tourism, all of which are useful to corporations, governments, and financial institutions.
Asunto(s)
Organizaciones , Turismo , China , GobiernoRESUMEN
Chitosan-stabilized iron-copper nanomaterials (CS-nZVI/Cu) were successfully prepared and applied to the nitrate removal. Batch experiments were conducted to examine the effects of experimental parameters on nitrate removal, including Cu loading, CS-nZVI/Cu dosages, initial nitrate concentrations, and initial pHs. From the experimental date, it was concluded that CS-nZVI/Cu has a high nitrate removal efficiency, which can be more than 97%, respectively, at Cu loading = 5%, dosages of CS-nZVI/Cu = 3 g/L, initial nitrate concentrations of 30~120 mg/L, and initial pH values = 2~9. Additionally, the kinetic data for CS-nZVI/Cu were found to fit well with the first-order kinetic model with a rate constant of 0.15 (mgâL)1-n/min, where n=1. The Langmuir model showed a good fit for NO3- removal, indicating that monolayer chemisorption occurred. The SEM and TEM analyses showed that the addition of chitosan resulted in improved dispersion of the CS-nZVI/Cu. The CS-nZVI/Cu nanomaterials have a more complete elliptical shape and are between 50 and 100 nm in size. The XRD analysis showed that the chitosan encapsulation reduced the oxidation of the iron component and the main product was Fe3O4. The FT-IR analysis showed that the immobilization of chitosan and the iron was accomplished by the ligand interaction. The nitrogen adsorption-desorption isotherm results showed that the CS-nZVI/Cu specific surface area and pore volume decreased significantly after the reaction. Adsorption, oxidation, and reduction are possible mechanisms for nitrate removal by CS-nZVI/Cu. The XPS analysis investigated the contribution of nZVI and Cu in the removal mechanism. Adding copper accelerates the reaction time and rate. In addition, nZVI played a vital role in reducing nitrate to N2. Based on these results, it looks like CS-nZVI/Cu could be a satisfactory material for nitrate removal.
Asunto(s)
Quitosano , Nanopartículas , Nitratos , Cobre , Espectroscopía Infrarroja por Transformada de Fourier , HierroRESUMEN
Cuprotosis is a new programmed cell death related to cancer. However, the characteristics of cuprotosis in gastric cancer (GC) remain unknown. Ten cuprotosis molecules from 1544 GC patients were used to identify three GC molecular genotypes. Cluster A was characterized by the best clinical outcome and was significantly enriched in metabolic signaling pathways. Cluster B exhibited elevated immune activation, high immune stroma scores and was significantly enriched in tumor immune signaling pathways. Cluster C was characterized by severe immunosuppression and poor response to immunotherapy. Notably, the citrate cycle, cell cycle, and p53 signaling pathways were enriched in the differentially expressed genes among the three subtypes, which were critical signaling pathways for cell death. We also developed a cuprotosis signature risk score that could accurately predict the survival, immunity, and subtype of GC. This study presents a systematic analysis of cuprotosis molecules and provides new immunotherapeutic targets for GC patients.
RESUMEN
Hypomanic personality manifests a close link with several psychiatric disorders and its abnormality is a risk indicator for developing bipolar disorders. We systematically investigated the potential neuroanatomical and functional substrates underlying hypomanic personality trait (HPT) and its sub-dimensions (i.e., Social Vitality, Mood Volatility, and Excitement) combined with structural and functional imaging data as well as their corresponding brain networks in a large non-clinical sample across two studies (n = 464). Behaviorally, HPT, specifically Mood Volatility and Excitement, was positively associated with aggressive behaviors in both studies. Structurally, sex-specific morphological characteristics were further observed in the motor and top-down control networks especially for Mood Volatility, although HPT was generally positively associated with grey matter volumes (GMVs) in the prefrontal, temporal, visual, and limbic systems. Functionally, brain activations related to immediate or delayed losses were found to predict individual variability in HPT, specifically Social Vitality and Excitement, on the motor and prefrontal-parietal cortices. Topologically, connectome-based prediction model analysis further revealed the predictive role of individual-level morphological and resting-state functional connectivity on HPT and its sub-dimensions, although it did not reveal any links with general brain topological properties. GMVs in the temporal, limbic (e.g., amygdala), and visual cortices mediated the effects of HPT on behavioral aggression. These findings suggest that the imbalance between motor and control circuits may be critical for HPT and provide novel insights into the neuroanatomical, functional, and topological mechanisms underlying the specific temperament and its impacts on aggression.
RESUMEN
The formation mechanism of ordered helical structures of conjugated polymers wrapping onto single-walled carbon nanotubes (SWCNTs) has been full of controversy in recent decades. A formation mechanism is proposed for the linear conjugated polymers wrapping around SWCNTs that the formation of helical structures is dependent on the orientation competition between backbone segments and side groups via transmission electron microscopy observations and molecular dynamics simulations. Results show that the conjugated polymers cannot always form stable helical structures, even if they have the capability to form a stable helix. In fact, only part of polymer segments presents a stable helix on the SWCNTs for the internal rotation in polymer deformations. Furthermore, a design framework is proposed to choose specific conjugated homopolymers and copolymers which can form helical structures on the SWCNTs.