Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(9): 6345-6351, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377535

RESUMEN

Selenium (Se) discovered in 1817 belongs to the family of chalcogens. Surprisingly, despite the long history of over two centuries and the chemical simplicity of Se, the structure of amorphous Se (a-Se) remains controversial to date regarding the dominance of chains versus rings. Here, we find that vapor-deposited a-Se is composed of disordered rings rather than chains in melt-quenched a-Se. We further reveal that the main origin of this controversy is the facile transition of rings to chains arising from the inherent instability of rings. This transition can be inadvertently triggered by certain characterization techniques themselves containing above-bandgap illumination (above 2.1 eV) or heating (above 50 °C). We finally build a roadmap for obtaining accurate Raman spectra by using above-bandgap excitation lasers with low photon flux (below 1017 phs m-2 s-1) and below-bandgap excitation lasers measured at low temperatures (below -40 °C) to minimize the photoexcitation- and heat-induced ring-to-chain transitions.

2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396695

RESUMEN

In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Nanotubos , Terapia Fototérmica , Oro/farmacología , Hipertermia Inducida/métodos , Nanopartículas del Metal/uso terapéutico
3.
J Am Chem Soc ; 145(10): 5872-5879, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36872583

RESUMEN

Passivating defects using organic halide salts, especially chlorides, is an effective method to improve power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) arising from the stronger Pb-Cl bonding than Pb-I and Pb-Br bonding. However, Cl- anions with a small radius are prone to incorporation into the perovskite lattice that distorts the lead halide octahedron, degrading the photovoltaic performance. Here, we substitute atomic-Cl-containing organic molecules for widely used ionic-Cl salts, which not only retain the efficient passivation by Cl but also prevent the incorporation of Cl into the bulk lattice, benefiting from the strong covalent bonding between Cl atoms and organic frameworks. We find that only when the distance of Cl atoms in single molecules matches well with the distance of halide ions in perovskites can such a configuration maximize the defect passivation. We thereby optimize the molecular configuration to enable multiple Cl atoms in an optimal spatial position to maximize their binding with surface defects. The resulting PSCs achieve a certified PCE of 25.02%, among the highest PCEs for PSCs, and retain 90% of their initial PCE after 500 h of continuous operation.

4.
Opt Lett ; 47(8): 2028-2031, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427328

RESUMEN

Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interest as a highly sensitive label-free tool to detect pollutants in aqueous environments. However, the high cost and poor reusability of conventional SERS substrates restrict their further applications in rapid and reproducible pollutant detection. Here, we report a reliable optical manipulation method to achieve rapid photothermal self-assembly of Au nanoparticles (AuNPs) in water within 30 s by a tapered optical fiber, which is utilized for highly sensitive SERS substrate preparation. The results show that the SERS substrate achieves low detection limits of 10-9 mol/L with an enhancement factor (EF) of 106 for chemical pollutants solutions, including thiram, pyrene, and rhodamine 6G. The SERS enhancement effect based on assembled AuNPs was more than 20 times that based on a gold colloid solution. As a result, the smart reversible assembly of AuNPs exhibits switchable plasmonic coupling for tuning SERS activity, which is promising for the application of SERS-based sensors and environmental pollutant detection.


Asunto(s)
Contaminantes Ambientales , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos
5.
Opt Lett ; 46(22): 5759-5762, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780455

RESUMEN

Formaldehyde (FA) is one of the most common pollutants, which has tremendous harm to humans and environment. In this work, 4-amino-3-pentene-2-one (Fluoral-p) and SiO2 coated quantum dot (QD@SiO2) were combined to implement a new ratiometric fluorescence probe QD@SiO2-Fluoral-p for FA detection. In addition, by utilization of polyvinyl alcohol (PVA) and SiO2 microsphere (SM), a kind of PVA-SM microstructure was assembled with QD@SiO2-Fluoral-p to composite a signal enhanced sensing film. The QD@SiO2-Fluoral-p exhibited good response to 0-400 mg/L FA solution and an enhancement around 15 folds was realized after introducing PVA-SM. In both situations, the probe showed linear relationship to FA concentration (CFA), with detection limits of 14 and 0.5 mg/L, respectively. Also, the sensing film showed a good linear response to FA gas in the range of 0 to 2 ppm, with a detection limit 0.03 ppm. As a result, the PVA-SM enhanced ratiometric fluorescence probe features high sensitivity, low detection limit, good selectivity, as well as portable, which can serve as a useful tool for investigating FA in solution and gas at room temperature.

6.
Opt Lett ; 46(19): 4714-4717, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598181

RESUMEN

The synergistic integration of optofluidic and surface enhanced Raman scattering (SERS) sensing is a new analytical technique that provides a number of unique characteristics for enhancing the sensing performance and simplifying the design of microsystems. Here, we propose a reusable optofluidic SERS sensor by integrating Au nanoisland substrate (AuNIS)-coated fiber into a microfluidic chip. Through both systematic experimental and theoretical analysis, the sensor enables efficient self-cleaning based on its optical-to-heat-hydrodynamic energy conversion property. Besides, the sensor exhibits the instrument detection limit down to 10-13mol/L and enhancement factor of 106 for Rhodamine 6G. Our optofluidic SERS sensor with such a photothermal microfluidic-assisted self-cleaning method has the advantages of portability, simple operation, and high cleaning efficiency, which will provide a new, to the best of our knowledge, concept and approach for cost-effective and reusable sensors.

7.
Opt Lett ; 46(15): 3629-3632, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329242

RESUMEN

Microfluidic techniques have emerged as promising strategies for a wide variety of synthetic or biological sorting. Unfortunately, there is still a lack of sorting with automatic and handy operation. In contrast to passively generated vortices, the thermocapillary vortices produced by temperature gradient have the advantages of flexible manipulation, stable strength, and simple integration. In this Letter, we present a device used for the pump-free separation of particles through vortices interaction without external fluidic control systems required for the majority of existing devices. Specifically, the device induces a different flow type upon the actuation of optical power, and the flow functions, such as simultaneous pumping and sorting, agree with stimulation results very well. More importantly, our developed sorting device can achieve separations by means of tunable cutoff diameter size. Therefore, this versatile device can be utilized to sort complex samples with the advantages of portability, user-friendly control, and automation.

8.
Opt Lett ; 45(7): 1998-2001, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236052

RESUMEN

Optofluidic manipulation of droplets is critical in droplet-based microfluidic systems for chemistry, biology, and medicine. Here, we reported a thermocapillary microvortices-based manipulation platform for controlling oil-in-water droplets through integrating a photothermal waveguide into a microfluidic chip. The sizes and shapes of the droplets can be controlled by adjusting optical power or positions of the water-oil interface. Here, teardrop-shaped droplets, which can encapsulate and accumulate mesoscopic matters easily, were generated when the water-oil interface and the channel boundaries approached the photothermal waveguide center simultaneously. The results showed that the thermocapillary microvortices have good controllability of droplet positions, droplet volumes, and encapsulated-particle distribution and thus it will be a powerful droplet manipulation strategy for microreactors and microcapsules.

9.
Phys Chem Chem Phys ; 22(2): 914-918, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31845940

RESUMEN

As a representative in-plane anisotropic two-dimensional (2D) material, germanium monoselenide (GeSe) has attracted considerable attention recently due to its various in-plane anisotropic material properties originating from the low symmetry of a puckered honeycomb structure. Although there have been plenty of reports on the in-plane anisotropic vibrational, electrical and optical properties of GeSe, the strain effect on those appealing anisotropies is still under exploration. Here we report a systematic first-principles computational investigation of strain-engineering of the anisotropic electronic properties of GeSe monolayers. We found that the anisotropic ratio of the effective mass and mobility of charge carriers (electrons and holes) of GeSe along two principle axes can be controlled by using simple strain conditions. Notably, the preferred conducting direction of GeSe can be even rotated by 90° under an appropriate uniaxial strain (>5%). Such effective strain modulation of the electronic anisotropy of GeSe monolayers provides them abundant opportunities for future mechanical-electronic devices.

10.
J Am Chem Soc ; 141(45): 18075-18082, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638806

RESUMEN

Defect passivation using oxygen has been identified as an efficient and convenient approach to suppress nonradiative recombination and improve the photovoltaic performance of hybrid organic-inorganic halide perovskites (HHPs). However, oxygen can seriously undermine the chemical stability of HHPs due to the reaction of superoxide with protonated organic cations such as CH3NH3+ and [(NH2)2CH]+, thus hindering the deep understanding of how oxygen affects their defect properties. Here we substitute free-proton inorganic Cs+ for organic moiety to avoid the negative effect of oxygen and then systematically investigate the oxygen passivation mechanism in all-inorganic halide perovskites (IHPs) from theory to experiment. We find that, in contrast to conventional oxygen molecule passivation just through physisorption on the surface of perovskites, the oxygen atom can provide a better passivation effect due to its stronger interaction with perovskites. The key point to achieve O-passivated perovskites rather than O2 is the dry-air processing condition, which can dissociate the O2 into O during the annealing process. O-passivated IHP solar cells exhibit enhanced power conversion efficiency (PCE) and better air stability than O2-passivated cells. These results not only provide deep insights into the passivation effect of oxygen on perovskites but also demonstrate the great potential of IHPs for high photovoltaic performance with simplified ambient processing.

11.
Opt Lett ; 44(7): 1868-1871, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933168

RESUMEN

In advanced biomedicine and microfluidics, there is a strong desire to sort and manipulate various cells and bacteria based on miniaturized microfluidic chips. Here, by integrating fiber tweezers into a T-type microfluidic channel, we report an optofluidic chip to selectively trap Escherichia coli in human blood solution based on different sizes and shapes. Furthermore, we simulate the trapping and pushing regions of other cells and bacteria, including rod-shaped bacteria, sphere-shaped bacteria, and cancer cells based on finite-difference analysis. With the advantages of controllability, low optical power, and compact construction, the strategy may be possibly applied in the fields of optical separation, cell transportation, and water quality analysis.


Asunto(s)
Separación Celular/instrumentación , Miniaturización/instrumentación , Fibras Ópticas , Pinzas Ópticas , Animales , Diseño de Equipo , Eritrocitos/microbiología , Escherichia coli/citología , Humanos
12.
J Am Chem Soc ; 140(11): 4150-4156, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29494139

RESUMEN

In-plane anisotropic layered materials such as black phosphorus (BP) have emerged as an important class of two-dimensional (2D) materials that bring a new dimension to the properties of 2D materials, hence providing a wide range of opportunities for developing conceptually new device applications. However, all of recently reported anisotropic 2D materials are relatively narrow-bandgap semiconductors (<2 eV), and there has been no report about this type of materials with wide bandgap, restricting the relevant applications such as polarization-sensitive photodetection in short wave region. Here we present a new member of the family, germanium diselenide (GeSe2) with a wide bandgap of 2.74 eV, and systematically investigate the in-plane anisotropic structural, vibrational, electrical, and optical properties from theory to experiment. Photodetectors based on GeSe2 exhibit a highly polarization-sensitive photoresponse in short wave region due to the optical absorption anisotropy induced by in-plane anisotropy in crystal structure. Furthermore, exfoliated GeSe2 flakes show an outstanding stability in ambient air which originates from the high activation energy of oxygen chemisorption on GeSe2 (2.12 eV) through our theoretical calculations, about three times higher than that of BP (0.71 eV). Such unique in-plane anisotropy and wide bandgap, together with high air stability, make GeSe2 a promising candidate for future 2D optoelectronic applications in short wave region.

13.
Opt Express ; 26(26): 34665-34674, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30650887

RESUMEN

Lately, a fiber-based optical tweezer that traps and arranges the micro/nano-particles is crucial in practical applications, because such a device can trap the biological samples and drive them to the designated position in a microfluidic system or vessel without harming them. Here, we report a new type of fiber optical tweezer, which can trap and arrange erythrocytes. It is prepared by coating graphene on the cross section of a microfiber. Our results demonstrate that thermal-gradient-induced natural convection flow and thermophoresis can trap the erythrocytes under low incident power, and the optical scattering force can arrange them precisely under higher incident power. The proposed optical tweezer has high flexibility, easy fabrication, and high integration with lab-on-a-chip, and shows considerable potential for application in various fields, such as biophysics, biochemistry, and life sciences.


Asunto(s)
Eritrocitos/química , Grafito/química , Dispositivos Laboratorio en un Chip , Nanoestructuras/química , Fibras Ópticas , Pinzas Ópticas , Animales , Ratones
14.
Chem Commun (Camb) ; 60(9): 1062-1071, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38167745

RESUMEN

Solid oxide fuel cells (SOFCs) are highly efficient and environmentally friendly devices for converting fuel into electrical energy. In this regard, metal nanoparticles (NPs) loaded onto the anode oxide play a crucial role due to their exceptional catalytic activity. NPs synthesized through exsolution exhibit excellent dispersion and stability, garnering significant attention for comprehending the exsolution process mechanism and consequently improving synthesis effectiveness. This review presents recent advancements in the exsolution process, focusing on the influence of oxygen vacancies, A-site defects, lattice strain, and phase transformation on the variation of the octahedral crystal field in perovskites. Moreover, we offer insights into future research directions to further enhance our understanding of the mechanism and achieve significant exsolution of NPs on perovskites.

15.
Adv Sci (Weinh) ; 11(22): e2400615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489666

RESUMEN

Selenium (Se), the world's oldest optoelectronic material, has been widely applied in various optoelectronic devices such as commercial X-ray flat-panel detectors and photovoltaics. However, despite the rare and widely-dispersed nature of Se element, a sustainable recycling of Se and other valuable materials from spent Se-based devices has not been developed so far. Here a sustainable strategy is reported that makes use of the significantly higher vapor pressure of volatile Se compared to other functional layers to recycle all of them from end-of-life Se-based devices through a closed-space evaporation process, utilizing Se photovoltaic devices as a case study. This strategy results in high recycling yields of ≈ 98% for Se and 100% for other functional materials including valuable gold electrodes and glass/FTO/TiO2 substrates. The refabricated photovoltaic devices based on these recycled materials achieve an efficiency of 12.33% under 1000-lux indoor illumination, comparable to devices fabricated using commercially sourced materials and surpassing the current indoor photovoltaic industry standard of amorphous silicon cells.

16.
Cancer Imaging ; 24(1): 62, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750551

RESUMEN

OBJECTIVES: To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC). METHODS: A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group. RESULTS: The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful. CONCLUSIONS: Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.


Asunto(s)
Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/patología , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Adulto , Anciano , Curva ROC , Adulto Joven , Radiómica
17.
Materials (Basel) ; 16(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297111

RESUMEN

A solid oxide fuel cell (SOFC) is a clean, efficient energy conversion device with wide fuel applicability. Metal-supported solid oxide fuel cells (MS-SOFCs) exhibit better thermal shock resistance, better machinability, and faster startup than traditional SOFCs, making them more suitable for commercial applications, especially in mobile transportation. However, many challenges remain that hinder the development and application of MS-SOFCs. High temperature may accelerate these challenges. In this paper, the existing problems in MS-SOFCs, including high-temperature oxidation, cationic interdiffusion, thermal matching, and electrolyte defects, as well as lower temperature preparation technologies, including the infiltration method, spraying method, and sintering aids method, are summarized from different perspectives, and the improvement strategy of existing material structure optimization and technology integration is put forward.

18.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896352

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) can boost the pristine Raman signal significantly which could be exploited for producing innovative sensing devices with advanced properties. However, the inherent complexity of SERS systems restricts their further applications in rapid detection, especially in situ detection in narrow areas. Here, we construct an efficient and flexible SERS-based Lab-on-Fiber (LOF) sensor by integrating Ag/Au nanocap arrays obtained by Ag/Au coating polystyrene nanospheres on the optical fiber face. We obtain rich "hot spots" at the nanogaps between neighboring nanocaps, and further achieve SERS performance with the assistance of laser-induced thermophoresis on the metal film that can achieve efficiency aggregation of detected molecules. We achieve a high Raman enhancement with a low detection limitation of 10-7 mol/L for the most efficient samples based on the above sensor. This sensor also exhibits good repeatability and stability under multiple detections, revealing the potential application for in situ detection based on the reflexivity of the optical fiber.

19.
Open Life Sci ; 17(1): 726-734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891968

RESUMEN

We detected the expressions of hsa_circRNA_000121 and hsa_circRNA_ 004183 in papillary thyroid microcarcinoma (PTMC) and explored their relationship with the invasiveness of PTMC. PTMC patients with (n = 30; metastasis group) and without lymph node metastasis (n = 30; nonmetastasis group) were included. The levels of hsa_circRNA_000121, hsa_circRNA_004183, hsa-miR-4763, hsa-miR-6775, sarcoma gene (SRC), and MMP-14 were detected with real-time polymerase chain reaction. Receiver-operating characteristic (ROC) analyzed the diagnostic value of hsa_circRNA_000121 and hsa_circRNA_004183. Binary logistic regression analysis evaluated the relationship of gene expression with PTMC invasiveness. In PTMC tissue samples, compared with the metastasis group, the expression of hsa_circRNA_000121, hsa_circRNA_004183, SRC, and MMP-14 in the nonmetastasis group decreased, while the expression of hsa-miR-4763 and hsa-miR-6775 increased. In peripheral blood, compared with the metastasis group, the expression of hsa_circ_000121 and hsa_circRNA_004183 in the nonmetastasis group decreased. Both hsa_circRNA_000121 and hsa_circRNA_004183 had good sensitivity and specificity for diagnosing PTMC lymph node metastasis, with a cut-off value of 0.796 and 0.938, respectively. However, the gene expressions were not significantly associated with PTMC lymph node metastasis. Hsa_circRNA_000121 may upregulate SRC expression through hsa-miR-4763, while hsa_circRNA 000121 may upregulate MMP-14 expression through hsa-miR-6775, thereby promoting the aggressiveness of PTMC and ultimately leading to cervical lymph node metastasis. hsa_circRNA_000121 and hsa_circRNA_004183 may become potential biomarkers of PTMC aggressiveness.

20.
Sci Adv ; 8(49): eadc9923, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475800

RESUMEN

Selenium (Se) solar cells were the world's first solid-state photovoltaics reported in 1883, opening the modern photovoltaics. However, its wide bandgap (~1.9 eV) limits sunlight harvesting. Here, we revisit the world's oldest but long-ignored photovoltaic material with the emergence of indoor photovoltaics (IPVs); the absorption spectrum of Se perfectly matches the emission spectra of commonly used indoor light sources in the 400 to 700 nm range. We find that the widely used Te adhesion layer also passivates defects at the nonbonded Se/TiO2 interface. By optimizing the Te coverage from 6.9 to 70.4%, the resulting Se cells exhibit an efficiency of 15.1% under 1000 lux indoor illumination and show no efficiency loss after 1000 hours of continuous indoor illumination without encapsulation, outperforming the present IPV industry standard of amorphous silicon cells in both efficiency and stability. We further fabricate Se modules (6.75 cm2) that produce 232.6 µW output power under indoor illumination, powering a radio-frequency identification-based localization tag.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA