Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 51(17): 9227-9247, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560909

RESUMEN

Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.


Asunto(s)
Sarcoma , Complejo Shelterina , Ratones , Humanos , Animales , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Daño del ADN , Proteína de Replicación A/metabolismo , Proteínas de Unión al ADN/genética
2.
EMBO J ; 38(21): e102718, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31544964

RESUMEN

DNA repair via homologous recombination (HR) is indispensable for genome integrity and cell survival but if unrestrained can result in undesired chromosomal rearrangements. The regulatory mechanisms of HR are not fully understood. Cyclic GMP-AMP synthase (cGAS) is best known as a cytosolic innate immune sensor critical for the outcome of infections, inflammatory diseases, and cancer. Here, we report that cGAS is primarily a chromatin-bound protein that inhibits DNA repair by HR, thereby accelerating genome destabilization, micronucleus generation, and cell death under conditions of genomic stress. This function is independent of the canonical STING-dependent innate immune activation and is physiologically relevant for irradiation-induced depletion of bone marrow cells in mice. Mechanistically, we demonstrate that inhibition of HR repair by cGAS is linked to its ability to self-oligomerize, causing compaction of bound template dsDNA into a higher-ordered state less amenable to strand invasion by RAD51-coated ssDNA filaments. This previously unknown role of cGAS has implications for understanding its involvement in genome instability-associated disorders including cancer.


Asunto(s)
Muerte Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Inestabilidad Genómica , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Reparación del ADN por Recombinación , Animales , Núcleo Celular/genética , Cromatina/genética , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Transducción de Señal
3.
Nature ; 550(7676): 360-365, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28976962

RESUMEN

The tumour suppressor complex BRCA1-BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1-BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2-PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1-BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1-BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1-BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1-BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1-BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy.


Asunto(s)
Proteína BRCA1/metabolismo , Emparejamiento Base , Emparejamiento Cromosómico , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Homología de Secuencia de Ácido Nucleico , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Genes BRCA1 , Genes BRCA2 , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Unión Proteica , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/genética , Moldes Genéticos , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
4.
J Biol Chem ; 295(24): 8186-8194, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32350107

RESUMEN

USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.


Asunto(s)
ADN/metabolismo , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Daño del ADN , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Unión Proteica , Estructura Secundaria de Proteína
5.
Nucleic Acids Res ; 43(20): 9817-34, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26323318

RESUMEN

NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.


Asunto(s)
Inestabilidad Genómica , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Reparación del ADN por Recombinación , Línea Celular , Cromatina/metabolismo , Aberraciones Cromosómicas , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Células HeLa/fisiología , Humanos , Mitomicina/farmacología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/efectos de la radiación , Proteínas de Unión al ARN , Recombinasa Rad51/metabolismo , Fase S/efectos de la radiación , Homología de Secuencia de Aminoácido , Rayos X
6.
PLoS Genet ; 9(2): e1003319, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468650

RESUMEN

Because cohesion prevents sister-chromatid separation and spindle elongation, cohesion dissolution may trigger these two events simultaneously. However, the relatively normal spindle elongation kinetics in yeast cohesin mutants indicates an additional mechanism for the temporal control of spindle elongation. Here we show evidence indicating that S-phase CDK (cyclin dependent kinase) negatively regulates spindle elongation. In contrast, mitotic CDK promotes spindle elongation by activating Cdc14 phosphatase, which reverses the protein phosphorylation imposed by S-phase CDK. Our data suggest that S-phase CDK negatively regulates spindle elongation partly through its phosphorylation of a spindle pole body (SPB) protein Spc110. We also show that hyperactive S-phase CDK compromises the microtubule localization of Stu2, a processive microtubule polymerase essential for spindle elongation. Strikingly, we found that hyperactive mitotic CDK induces uncoupled spindle elongation and sister-chromatid separation in securin mutants (pds1Δ), and we speculate that asynchronous chromosome segregation in pds1Δ cells contributes to this phenotype. Therefore, the tight temporal control of spindle elongation and cohesin cleavage assure orchestrated chromosome separation and spindle elongation.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides , Mitosis/genética , Proteínas Tirosina Fosfatasas , Proteínas de Saccharomyces cerevisiae , Huso Acromático , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Fase S/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Huso Acromático/genética , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Cohesinas
7.
J Cell Sci ; 126(Pt 18): 4173-86, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843611

RESUMEN

The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas 14-3-3/genética , Dineínas , Chaperonas Moleculares/genética , Pliegue de Proteína , Proteínas/metabolismo , Transfección
8.
Cell Rep ; 43(1): 113610, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165804

RESUMEN

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Ubiquitinación , Reparación del ADN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Daño del ADN , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
9.
PLoS Genet ; 4(11): e1000262, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19023403

RESUMEN

The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome-microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore-microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biological significance of this short S-phase spindle structure remains unclear. We addressed this issue by using ask1-3, a temperature-sensitive kinetochore mutant that exhibits partially elongated spindles at permissive temperature in the presence of hydroxyurea (HU), a DNA synthesis inhibitor. After exposure to and removal of HU, ask1-3 cells show a delayed anaphase entry. This delay depends on the spindle checkpoint, which monitors kinetochore-microtubule interaction defects. Overproduction of microtubule-associated protein Ase1 or Cin8 also induces spindle elongation in HU-arrested cells. The spindle checkpoint-dependent anaphase entry delay is also observed after ASE1 or CIN8 overexpression in HU-arrested cells. Therefore, the shorter spindle in S-phase cells is likely to facilitate proper chromosome-microtubule interaction.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Saccharomycetales/genética , Huso Acromático/metabolismo , Anafase , Células Cultivadas , Genes Fúngicos , Hidroxiurea/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fase S , Saccharomycetales/metabolismo
10.
Proc Natl Acad Sci U S A ; 105(42): 16177-82, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18845678

RESUMEN

The temporal phosphorylation of cell cycle-related proteins by cyclin-dependent kinases (Cdks) is critical for the correct order of cell cycle events. In budding yeast, CDC28 encodes the only Cdk and its association with various cyclins governs the temporal phosphorylation of Cdk substrates. S-phase Cdk substrates are phosphorylated earlier than mitotic Cdk substrates, which ensures the sequential order of DNA synthesis and mitosis. However, it remains unclear whether Cdk substrates are dephosphorylated in temporally distinct windows. Cdc14 is a conserved protein phosphatase responsible for the dephosphorylation of Cdk substrates. In budding yeast, FEAR (Cdc14 early anaphase release) and MEN (mitotic exit network) activate phosphatase Cdc14 by promoting its release from the nucleolus in early and late anaphase, respectively. Here, we show that the sequential Cdc14 release and the distinct degradation timing of different cyclins provides the molecular basis for the differential dephosphorylation windows of S-phase and mitotic cyclin substrates. Our data also indicate that FEAR-induced dephosphorylation of S-phase Cdk substrates facilitates anaphase progression, revealing an extra layer of mitotic regulation.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Mitosis , Saccharomycetales/citología , Saccharomycetales/enzimología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Ciclinas/metabolismo , Mutación/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomycetales/genética , Especificidad por Sustrato , Factores de Tiempo
11.
Mol Cell Biol ; 27(14): 5067-78, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17485442

RESUMEN

Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.


Asunto(s)
Daño del ADN , Mitosis , Saccharomyces cerevisiae/citología , Anafase , Nucléolo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Activación Enzimática , Epistasis Genética , Genes Fúngicos , Mutación/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 26(3): 564-572.e5, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650351

RESUMEN

Fanconi anemia (FA) is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. FA cells are hypersensitive to DNA replicative stress and accumulate co-transcriptional R-loops. Here, we use the Damage At RNA Transcription assay to reveal colocalization of FANCD2 with R-loops in a highly transcribed genomic locus upon DNA damage. We further demonstrate that highly purified human FANCI-FANCD2 (ID2) complex binds synthetic single-stranded RNA (ssRNA) and R-loop substrates with high affinity, preferring guanine-rich sequences. Importantly, we elucidate that human ID2 binds an R-loop structure via recognition of the displaced ssDNA and ssRNA but not the RNA:DNA hybrids. Finally, a series of RNA and R-loop substrates are found to strongly stimulate ID2 monoubiquitination, with activity corresponding to their binding affinity. In summary, our results support a mechanism whereby the ID2 complex suppresses the formation of pathogenic R-loops by binding ssRNA and ssDNA species, thereby activating the FA pathway.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , ARN/metabolismo , Animales , Pollos , ADN/genética , ADN/metabolismo , Daño del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación , Masculino , Estructuras R-Loop , ARN/genética , Ubiquitinación
13.
Nat Commun ; 10(1): 2849, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253762

RESUMEN

Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas Nucleares/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas de Unión al ARN , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
14.
Mol Biol Cell ; 27(13): 2025-36, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170182

RESUMEN

Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Cuerpos de Inclusión/metabolismo , Lisosomas/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Vacuolas/metabolismo
15.
Cell Rep ; 15(10): 2118-2126, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27239033

RESUMEN

The UAF1-USP1 complex deubiquitinates FANCD2 during execution of the Fanconi anemia DNA damage response pathway. As such, UAF1 depletion results in persistent FANCD2 ubiquitination and DNA damage hypersensitivity. UAF1-deficient cells are also impaired for DNA repair by homologous recombination. Herein, we show that UAF1 binds DNA and forms a dimeric complex with RAD51AP1, an accessory factor of the RAD51 recombinase, and a trimeric complex with RAD51 through RAD51AP1. Two small ubiquitin-like modifier (SUMO)-like domains in UAF1 and a SUMO-interacting motif in RAD51AP1 mediate complex formation. Importantly, UAF1 enhances RAD51-mediated homologous DNA pairing in a manner that is dependent on complex formation with RAD51AP1 but independent of USP1. Mechanistically, RAD51AP1-UAF1 co-operates with RAD51 to assemble the synaptic complex, a critical nucleoprotein intermediate in homologous recombination, and cellular studies reveal the biological significance of the RAD51AP1-UAF1 protein complex. Our findings provide insights into an apparently USP1-independent role of UAF1 in genome maintenance.


Asunto(s)
Emparejamiento Cromosómico , ADN/metabolismo , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Secuencia de Aminoácidos , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos
16.
DNA Seq ; 16(2): 103-10, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16147861

RESUMEN

Cloning of plant disease resistant genes is greatly helpful for disease resistant breeding in plants and the insight of resistance mechanism. However, there are less relevant researches in peach [prunus persica (L.) Batch]. In this study, four NBS-LRR type resistance gene analogs (RGAs) were cloned from genomic DNA of peach. The PNBS2 fragment was also amplified from peach cDNA and the full-length cDNA of PNBS2 (PRPM1, GenBank accession no. AY599223) has been cloned. Sequence analysis indicated that the cDNA of PRPM1 is 3007 bp in length and that the contained ORF encodes for a polypeptide of 917 amino acids. Compared with known NBS-LRR genes, it presented relatively high amino acid sequence identity. The polypeptide has typical structure of non-TIR-NBS-LRR genes, with NB-ARC, LZ, LRR and transmembrane domains. Southern analysis indicated that the PRPM1 gene might be a single copy in peach genome. Northern blot and RT-PCR analysis showed that the expression of PRPM1 was not induced by salicylic acid (SA) in peach young leaves. The isolation of putative resistance genes from peach provided useful bases for studying the structure and function of peach disease-resistance relating genes and disease resistant genetic breeding in peach.


Asunto(s)
Inmunidad Innata , Enfermedades de las Plantas/genética , Proteínas/genética , Prunus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Northern Blotting , Southern Blotting , Mapeo Cromosómico , Clonación Molecular , ADN/química , ADN Complementario/metabolismo , Biblioteca de Genes , Proteínas Repetidas Ricas en Leucina , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , ARN/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Homología de Secuencia de Aminoácido , Factores de Tiempo
17.
Yi Chuan Xue Bao ; 30(8): 717-22, 2003 Aug.
Artículo en Zh | MEDLINE | ID: mdl-14682239

RESUMEN

beta-1,3-glucanase(BG2) is one of the pathogensis-related-proteins(PR). Study of these proteins and their related genes is one of the hot points in plant genetic engineering of disease resistance for a long time. In this research, specific primers were designed with the enzyme cleavage site of Spe I in its forward one and Not I site in the backward according to the BG2 gene sequence. Using this pair of primers, BG2 gene, which was contained in the plasmid of pRTL2, was amplified and confirmed by sequencing the amplified fragment inserted into T-easy vector. The positive clone containing BG2 gene was digested with the enzymes of Spe I/Not I and then BG2 gene was inserted into the Xba I/Not I sites of super expression binary vector pATC940. The reconstructed expression vector named as pATCBG2 was introduced into the wheat of Longfumai10 and Longfumai3 (Triticum aestivum L. em. Thell) through the particle gun transformation method. The Kanamysin resistant (Km') transformants were obtained. PCR, Dot-blotting and PCR-Southern hybridization analysis showed that the BG2 gene was integrated into the genome of wheat. Result of pathogen inoculation assay on the transgenic plants showed that the transgenic plants had a higher resistant disease score of 1-2 grade than the control.


Asunto(s)
Vectores Genéticos/genética , Glucano 1,3-beta-Glucosidasa/genética , Triticum/genética , Ascomicetos/crecimiento & desarrollo , Southern Blotting , Clonación Molecular/métodos , ADN de Plantas/genética , ADN de Plantas/metabolismo , Desoxirribonucleasa EcoRI/metabolismo , Desoxirribonucleasa HindIII/metabolismo , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Transformación Genética , Triticum/microbiología
18.
Yi Chuan Xue Bao ; 30(4): 341-4, 2003 Apr.
Artículo en Zh | MEDLINE | ID: mdl-12812059

RESUMEN

Southern corn rust (SCR) is a destructive disease in maize. The inbred line Qi319 is highly resistant to southern corn rust. SSR technique was employed to preliminary mapping of the resistance gene. Bulked segregant analysis revealed that two primers, phi 118 and phi 041, amplified polymorphic bands. SSR analysis on populations indicated the two primers were linked to the rust resistance gene, which was mapped on the short arm of chromosome 10. In addition, comparative analysis of the amplification bands among different populations revealed that the amplification products with the same primer in different populations were dissimilar. This result indicates that the genetic background may affect results of gene mapping and tagging. So, it is important to select suitable population to performing molecular marker analysis and gene mapping.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Zea mays/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Inmunidad Innata/genética , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Zea mays/microbiología
19.
Yi Chuan ; 25(4): 461-5, 2003 Jul.
Artículo en Zh | MEDLINE | ID: mdl-15639909

RESUMEN

The study of plant male sterility plays an important role on utilization of heterosis. This paper reviews the current status of the studies of the heredity and mapping of the male sterile genes in wheat and the gene engineering of wheat male sterility. The application of male sterility in wheat breeding is discussed.

20.
Mol Biol Cell ; 24(5): 566-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283988

RESUMEN

In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore-microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.


Asunto(s)
Segregación Cromosómica/genética , ADN/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Anafase/genética , Segregación Cromosómica/efectos de los fármacos , Cromosomas/genética , Cromosomas/ultraestructura , ADN/efectos de los fármacos , Cinetocoros/efectos de los fármacos , Cinetocoros/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Mitosis/genética , Mutación , Nocodazol/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA