Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 34(5): 1202-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23416225

RESUMEN

This study aimed to evaluate the dietary lipid requirement and its effects on liver oxidative status and non-specific immune responses of juvenile grass carp (Ctenopharyngodon idella). Purified diets with five dietary lipid levels (0%, 2.5%, 5%, 7.5% and 10%, fish oil/corn oil = 1:1) were each fed to triplicate groups of grass carp (mean initial weight: 6.57 ± 0.01 g) in a recirculating rearing system maintained at 27.5 ± 0.5 °C for 10 weeks. Percent weight gain was highest (P < 0.05) with 5% lipid and lowest in fish fed the lipid free control diet. Feed efficiency (FE) and protein efficiency ratio (PER) in fish followed the same pattern of percent weight gain. Fish fed with lipid containing diets had better non-specific immune response indexes (e.g. phagocytic activity, plasma peroxidase and lysozyme activity) and low-level of liver oxidation status than fish fed with the control diet. But excess dietary lipid supplement would bring over metabolic burden to liver. After the feeding trial, fish were challenged by Aeromonas hydrophila. Fish fed control diet obtained significantly (P < 0.05) lower survival rate. The survival rate was highest with 7.5% lipid. The results of this study indicated that proper dietary lipid supplementation enhanced the immune response of grass carp and improved the survival rate in the bacterial challenge, but excess dietary lipid may elevate liver oxidation rates of grass carp. Analysis by second-order regression of percent weight gain indicated that the optimal dietary lipid level in juvenile grass carp (6.6-35.5 g) is about 6.5%.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/inmunología , Dieta/veterinaria , Lípidos/administración & dosificación , Aeromonas hydrophila/inmunología , Animales , Acuicultura , Carpas/metabolismo , Relación Dosis-Respuesta a Droga , Inmunidad Innata , Hígado/metabolismo , Oxidación-Reducción
2.
Fish Physiol Biochem ; 39(3): 593-604, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23053606

RESUMEN

Six oxidized fish oil contained diets were formulated to investigate the effect of graded levels of vitamin E (V(E)) (α-tocopherol acetate: 160, 280, and 400 mg kg(-1)) associated with either 1.2 or 1.8 mg kg(-1) selenium (Se) on growth, body composition, and antioxidant defense mechanism of juvenile largemouth bass. Another control diet containing fresh fish oil with 160 mg kg(-1) V(E) and 1.2 mg kg(-1) Se was also prepared. Over a 12-week feeding trial, about 5 % of Micropterus salmoide fed diet OxSe1.2/V(E)160 showed inflammation and hemorrhage symptoms at the base of dorsal, pectoral, and tail fin. Fish in all treatments survived well (above 90 %). Feed intakes (88.42-89.58 g fish(-1)) of all treatments were comparable. Growth performances (weight gain and specific growth rate) and feed utilization (feed and protein efficiency ratio) were significantly impaired by dietary oil oxidation, and they did not benefit from neither V(E) nor Se supplementation. Regardless of dietary V(E) and Se supplementation, oxidized oil ingestion resulted in markedly decreased hepatosomatic index and intraperitoneal fat ratio. Oxidized oil ingestion also induced markedly lower liver and muscle lipid contents, and these effects could be alleviated by dietary Se supplementation. Dietary oil oxidation stimulated hepatic catalase activities relative to the control, and supplementation of V(E) abrogated this effect. Hepatic reduced glutathione content in the control was markedly higher than that of treatment OxSe1.2/V(E)160, without any significant differences comparing with the other oxidized oil receiving groups. Hepatic glutathione peroxidase activity and liver Se concentration reflected dietary Se profile, whereas liver V(E) level reflected dietary V(E) profile. Compared with the control, fish fed diet OxSe1.2/V(E)160 obtained markedly higher serum, liver and muscle malondialdehyde contents, which droppe significantly with increasing either V(E) or Se supplementation. In conclusion, the overall results in this study suggested that both V(E) and Se inclusion could protect largemouth bass from the oxidative damage challenged by dietary oil oxidation.


Asunto(s)
Lubina/fisiología , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos , Aceites de Pescado/farmacología , Crecimiento/efectos de los fármacos , Selenio/farmacología , Vitamina E/farmacología , Análisis de Varianza , Animales , Composición Corporal/fisiología , Crecimiento/fisiología
3.
J Anim Sci Biotechnol ; 3(1): 19, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22958647

RESUMEN

One experiment was conducted to determine the nutritive value of cholesterol for post-larval shrimp, Litopenaeus vannamei. Four isoenergetic and isonitrogenous diets supplemented with four levels of cholesterol (D1, D2, D3 and D4 with 0, 0.5%, 1% and 2% cholesterol, respectively) were fed to triplicate groups of L. vannamei shrimp (mean initial wet weight 0.8 mg) for 27 days. After the trial, shrimp fed the D1 diet had the best growth performance (final body weights: FBW; weight gain: WG; specific growth rate: SGR), while there was no significant difference between diet treatments with respect to survival. The whole body crude protein level in the shrimp decreased with the increase in dietary cholesterol levels, while the whole body crude lipid level in shrimps in the D4 diet treatment was significantly higher (P < 0.05) than in other diet treatments. Dietary analysis indicated that the D1 diet contained 0.92% cholesterol prior to supplementation, which may have satisfied the dietary cholesterol requirement of post-larval L. vannamei; excess dietary cholesterol may thus lead to adverse effects on the growth performance of post-larval shrimp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA