Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(10): e18317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801409

RESUMEN

Euphorbiae Humifusae Herba (EHH) is a pivotal therapeutic agent with diverse pharmacological effects. However, a substantial gap exists in understanding its pharmacological properties and anti-tumour mechanisms. This study aimed to address this gap by exploring EHH's pharmacological properties, identifying NSCLC therapy-associated protein targets, and elucidating how EHH induces mitochondrial disruption in NSCLC cells, offering insights into novel NSCLC treatment strategies. String database was utilized to explore protein-protein interactions. Subsequently, single-cell analysis and multi-omics further unveiled the impact of EHH-targeted genes on the immune microenvironment of NSCLC, as well as their influence on immunotherapeutic responses. Finally, both in vivo and in vitro experiments elucidated the anti-tumour mechanisms of EHH, specifically through the assessment of mitochondrial ROS levels and alterations in mitochondrial membrane potential. EHH exerts its influence through engagement with a cluster of 10 genes, including the apoptotic gene CASP3. This regulatory impact on the immune milieu within NSCLC holds promise as an indicator for predicting responses to immunotherapy. Besides, EHH demonstrated the capability to induce mitochondrial ROS generation and perturbations in mitochondrial membrane potential in NSCLC cells, ultimately leading to mitochondrial dysfunction and consequent apoptosis of tumour cells. EHH induces mitochondrial disruption in NSCLC cells, leading to cell apoptosis to inhibit the progress of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mitocondrias , Análisis de la Célula Individual , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Línea Celular Tumoral , Ratones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología , Multiómica
2.
Environ Res ; 247: 118233, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262513

RESUMEN

Fractional vegetation cover (FVC) has changed significantly under various disturbances over northern China in recent decades. This research examines the dynamics of FVC and how it is affected by climate and human activity during the period of 1990-2018 in northern China. The effects of climate change (i.e., temperature, precipitation, solar radiation, and soil moisture) and human activity (socioeconomic data and land use) on vegetation coverage change in northern China from 1990 to 2018 were quantified using the Sen + Mann-Kendall test, partial correlation analysis, and structural equation modelling (SEM) methods. The findings of this research indicate the following: (1) From 1990 to 2018, the overall trend in FVC in northern China was increased. The areas with obvious increases were mainly situated on the northern slope of Tianshan Mountains, Xinjiang, the Loess Plateau, the Northeast China Plain, and the Sanjiang Plain, while the areas with distinct degradation were located in the Inner Mongolia Plateau, the Changbai Mountain and the eastern part of north China. (2) In the past 29 years, the FVC in northern China has been mainly affected by precipitation and soil moisture. (3) Based on structural equation modelling, we discovered that certain variables impacted the main factors influencing the amount of FVC in northern China. Human activity has had a larger impact on FVC than climate change. Our findings can accelerate the comprehension of vegetation dynamics and their underlying mechanisms and provide a theoretical basis for regional ecological environmental protection.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , China , Actividades Humanas , Temperatura , Suelo
3.
J Environ Manage ; 345: 118723, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536129

RESUMEN

Evapotranspiration (ET) is a key variable in the water cycle and reflects the ecosystem's feedback into the climate system. However, quantitative studies on the response of ET to large-scale vegetation restoration projects and climate change are still lacking, especially in drylands. To address this deficiency, this research examined the variation in ET since the implementation of restoration projects in the drylands of China in 2000-2018, and utilized quantitative analysis methods to investigate the effects of six environmental factors, including temperature (TEM), precipitation (PRE), solar radiation (RAD), vapour pressure deficit (VPD), soil moisture (SM), and leaf area index (LAI) on ET. Furthermore, a new method was proposed to detect the ET change caused by land use and land cover change (LUCC). The results indicated that ET showed a significant increasing trend (3.54 mm yr-1) during 2000-2018, and PRE was identified as a main influential factor with an ET contribution rate of more than 50%, especially in areas with insignificant vegetation greening. Additionally, the LAI had a major positive impact on ET in the areas of significant vegetation greening, and the contribution rate was nearly 40%. Furthermore, large-scale vegetation restoration expanded the area of high-transpiration vegetation types, and the ΔET (net variable quantity of ET caused by LUCC) increased obviously especially for the changes from cropland and grassland to forest, and barren land to grassland. These findings provide a new perspective for future assessments and further decision making regarding vegetation restoration projects in drylands.


Asunto(s)
Ecosistema , Suelo , Bosques , China , Cambio Climático , Políticas
4.
Int J Med Sci ; 19(7): 1173-1183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919820

RESUMEN

Backgrounds: The immunonutritional index showed great potential for predicting postoperative complications in various malignant diseases, while risk assessment based on machine learning (ML) methods is becoming popular in clinical practice. Early detection and prevention for postoperative anastomotic leakage (AL) play an important role in prognosis improvement among patients with gastric cancer (GC). Methods: This retrospective study included 297 patients with gastric cancer receiving gastrectomy between 2018 and 2021 in general surgery department of Xinhua Hospital. Perioperative clinical variables were collected to evaluate the predictive value for postoperative AL with 5 ML models. Then, AUROC was applied to identify the optimal perioperative clinical index and ML model for predicting postoperative AL. Results: The incidence of postoperative AL was 6.1% (n=18). After the training of 5 ML classification models, we found that immunonutritional index had significantly better classification ability than inflammatory or nutritional index alone separately (AUROC=0.87 vs. 0.83, P=0.01; AUROC=0.87 vs. 0.68, P<0.01). Next, we found that support vector machine (SVM), one of the ML methods, with selected immunonutritional index showed significantly greater classification ability than optimal univariant parameter [CRP on postoperative day 4 (AUROC=0.89 vs.0.86, P=0.02)]. Also, statistical analysis revealed multiple variables with significant relevance to postoperative AL, including serum CRP and albumin on postoperative day 4, NLR and SII etc. Conclusion: This study showed that perioperative immunonutritional index could act as an indicator for postoperative AL. Also, ML methods could significantly enhance the classification ability, and therefore, could be applied as a powerful tool for postoperative risk assessment for patients with GC.


Asunto(s)
Fuga Anastomótica , Neoplasias Gástricas , Fuga Anastomótica/diagnóstico , Fuga Anastomótica/epidemiología , Fuga Anastomótica/etiología , Correlación de Datos , Gastrectomía/efectos adversos , Humanos , Aprendizaje Automático , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Neoplasias Gástricas/cirugía
5.
Int J Med Sci ; 19(2): 286-298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165514

RESUMEN

Pancreatic cancer (PC) is one of the most fatal and chemoresistant malignancies with a poor prognosis. The current therapeutic options for PC have not achieved satisfactory results due to drug resistance. Therefore, it is urgent to develop novel treatment strategies with enhanced efficacy. This study sought to investigate the anticancer effect of gemcitabine and XCT790, an estrogen-related receptor alpha (ERRα) inverse agonist, as monotherapies or in combination for the treatment of PC. Here we demonstrated that the drug combination synergistically suppressed PC cell viability, its proliferative, migratory, invasive, apoptotic activities, and epithelial-to-mesenchymal transition (EMT), and it triggered G0/G1 cell cycle arrest and programmed cell death in vitro. In addition, in vivo assays using xenograft and mini-PDX (patient-derived xenograft) models further confirmed the synergistic antitumor effect between gemcitabine and XCT790 on PC. Mechanistically, gemcitabine and XCT790 suppressed PC by inhibiting ERRα and MEK/ERK signaling pathway. In conclusion, our current study demonstrated for the first time that gemcitabine combined with XCT790 displayed synergistic anticancer activities against PC, suggesting that their combination might be a promising treatment strategy for the therapy of PC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Desoxicitidina/análogos & derivados , Nitrilos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Estrógenos/efectos de los fármacos , Tiazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Desoxicitidina/farmacología , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina , Receptor Relacionado con Estrógeno ERRalfa
6.
Cancer Sci ; 110(11): 3510-3519, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31487418

RESUMEN

NOP2/Sun domain family, member 2 (NSUN2) is a nuclear RNA methyl-transferase catalyzing 5-methylcytosine formation. Evidence shows that NSUN2 is correlated with cell unlimited proliferation. However, its functional role in gallbladder carcinoma (GBC), which is the most common biliary tract malignancy and has a poor prognosis, remains to be determined. Here we found that NSUN2 was highly expressed in GBC tissues as well as cell lines. NSUN2 silencing repressed GBC cell proliferation and tumorigenesis both in vitro and in vivo. Conversely, upregulation of NSUN2 enhanced GBC cell growth and colony formation. We further discovered that RPL6 was a closely interacting partner with NSUN2. Silencing RPL6 resulted in insufficient NSUN2 translational level and accumulative NSUN2 transcriptional level. Exogenous expression of NSUN2 partially rescued the effect of RPL6 in gallbladder cancer progression. Taken together, our data provided novel mechanic insights into the function of NSUN2 in GBC, thus pointing to NSUN2 as a potential and effective therapeutic approach to GBC treatment.


Asunto(s)
Carcinoma/metabolismo , Neoplasias de la Vesícula Biliar/metabolismo , Metiltransferasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Ribosómicas/metabolismo , Animales , Carcinoma/patología , Carcinoma/terapia , Línea Celular Tumoral , Proliferación Celular , Colecistitis/metabolismo , Progresión de la Enfermedad , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/terapia , Humanos , Metiltransferasas/antagonistas & inhibidores , Ratones , Ratones Desnudos , Ensayo de Tumor de Célula Madre , Regulación hacia Arriba
7.
Cancer Cell Int ; 19: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30814911

RESUMEN

BACKGROUND: SLC25A22, a member of mitochondrial carrier system (MCS) family encoding a mitochondrial glutamate transporter, has been reported to have vital roles in promoting proliferation and migration in cancer. Gallbladder cancer (GBC) is the most common biliary tract malignancy and has a poor prognosis. We aimed to determine the expression and function of SLC25A22 in GBC. METHODS: Immunohistochemistry (IHC) staining analysis and quantitative real-time PCR (qRT-PCR) were conducted to determine the expression of SLC25A22 in GBC tissues. Human NOZ and GBC-SD cells were used to perform the experiments. The protein expression was detected by western-blot analysis. Cell viability was evaluated via CCK-8 assay and colony formation assay. Cell migration and invasion in vitro were investigated by wound healing and transwell assay. Annexin V/PI staining assay for apoptosis were measured by flow cytometry. The effect of SLC25A22 in vivo was conducted with subcutaneous xenograft. RESULTS: We indicated that the expression of SLC25A22 was significantly upregulated in GBC tumor tissues as well as cell lines. Downregulation of SLC25A22 inhibited GBC cell growth and proliferation in vitro and in vivo and also had an effect on metastasis of GBC cells through the EMT processes. In addition, inhibition of SLC25A22 promoted mitochondrial apoptosis via downregulating BCL-2 and upregulating cleaved PARP, Cytochrome-c, and BAX mediated by MAPK/ERK pathway. CONCLUSIONS: Our study identified that SLC25A22 promoted development of GBC activating MAPK/ERK pathway. SLC25A22 has a potential to be used as a target for cancer diagnosis of GBC and related therapies.

8.
EMBO Rep ; 18(10): 1837-1853, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28887321

RESUMEN

Long noncoding RNAs (lncRNAs) play roles in the development and progression of many cancers; however, the contributions of lncRNAs to human gallbladder cancer (GBC) remain largely unknown. In this study, we identify a group of differentially expressed lncRNAs in human GBC tissues, including prognosis-associated gallbladder cancer lncRNA (lncRNA-PAGBC), which we find to be an independent prognostic marker in GBC Functional analysis indicates that lncRNA-PAGBC promotes tumour growth and metastasis of GBC cells. More importantly, as a competitive endogenous RNA (ceRNA), lncRNA-PAGBC competitively binds to the tumour suppressive microRNAs miR-133b and miR-511. This competitive role of lncRNA-PAGBC is required for its ability to promote tumour growth and metastasis and to activate the AKT/mTOR pathway. Moreover, lncRNA-PAGBC interacts with polyadenylate binding protein cytoplasmic 1 (PABPC1) and is stabilized by this interaction. This work provides novel insight on the molecular pathogenesis of GBC.


Asunto(s)
Carcinogénesis/genética , Neoplasias de la Vesícula Biliar/genética , Vesícula Biliar/fisiopatología , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias de la Vesícula Biliar/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
10.
Cell Physiol Biochem ; 41(5): 2117-2131, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28427077

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is an aggressive and highly lethal biliary tract malignancy, with extremely poor prognosis. In the present study, we analyzed the potential involvement of MYBL2, a member of the Myb transcription factor family, in the carcinogenesis of human GBC. METHODS: MYBL2 expression levels were measured in GBC and cholecystitis tissue specimens using quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) assays. The effects of MYBL2 on cell proliferation and DNA synthesis were evaluated using Cell Counting Kit-8 assay (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) retention assay, flow cytometry analysis, western blot, and a xenograft model of GBC cells in nude mice. RESULTS: MYBL2 expression was increased in GBC tissues and associated with histological differentiation, tumour invasion, clinical stage and unfavourable overall survival in GBC patients. The downregulation of MYBL2 expression resulted in the inhibition of GBC cell proliferation, and DNA replication in vitro, and the growth of xenografted tumours in nude mice. Conversely, MYBL2 overexpression resulted in the opposite effects. CONCLUSIONS: MYBL2 overexpression promotes GBC cell proliferation through the regulation of the cell cycle at the S and G2/M phase transitions. Thus, MYBL2 could serve as a potential prognostic and therapeutic biomarker in GBC patients.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Proteínas de Ciclo Celular/biosíntesis , Proliferación Celular , Neoplasias de la Vesícula Biliar , Proteínas de Neoplasias/biosíntesis , Transactivadores/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/mortalidad , Neoplasias de la Vesícula Biliar/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Tasa de Supervivencia
11.
Tumour Biol ; 37(6): 8305-15, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26729195

RESUMEN

LIM and SH3 protein 1 (LASP-1) is demonstrated to play a key role in occurrence and development of tumors. However, the expression and function of LASP-1 in cholangiocarcinoma (CCA) remain largely unexplored. This study aimed to investigate the effect of regulated LASP-1 expression on migration, invasion, proliferation, and apoptosis of CCA cells and on tumorigenesis in vivo, and to examine clinico-oncological correlates of LASP-1 expression. Expression of LASP-1 by immunohistochemistry was evaluated in CCA tissue samples. HCCC-9810 and RBE cells were transfected with the LASP-1 small interfering RNA (siRNA), and the effect of knocking down LASP-1 gene expression on cell migration, invasion, proliferation, and apoptosis were examined by wound healing, transwell assays, CCK-8 assays, colony formation, and flow cytometry assays, respectively. Xenograft tumor model was used to validate the effect of downregulated LASP-1 in vivo. Our results demonstrated that LASP-1 was over-expressed in CCA tissues, positively correlating with larger tumors, poor histological differentiation, lymph node metastasis, advanced TNM stage, and poor prognosis in CCA patients (P < 0.05). Downregulation of LASP-1 in HCCC-9810 and RBE cell lines significantly increased cell apoptosis and suppressed cell migration, invasion, and proliferation in vitro and tumorigenesis in vivo. Our results indicate that LASP-1 may essentially involve in the metastasis and growth of CCA and clinical significance of LASP-1 may reside in function as a biomarker to predict prognosis and as a promising therapeutic strategy for CCA patients by the inhibition of LASP-1 expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/genética , Colangiocarcinoma/patología , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas con Dominio LIM/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Western Blotting , Carcinogénesis/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Invasividad Neoplásica/genética , Fenotipo , Pronóstico , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
12.
Genes (Basel) ; 14(10)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895193

RESUMEN

BACKGROUND: Whether the positive associations of gastric cancer (GC) with autoimmune diseases are causal has always been controversial. This study aims to estimate the causal relationship between GC and 12 autoimmune diseases by means of Mendelian randomization (MR) analysis. METHODS: After rigorous evaluation, potential candidate single nucleotide polymorphisms (SNPs) for GC and 12 autoimmune diseases were extracted from genome-wide association study (GWAS) datasets. We performed the MR analyses using the inverse variance weighted (IVW) method as the primary approach to the analysis. Three sensitivity analysis methods were added to assess the robustness of the results. In addition, heterogeneity was measured using Cochran's Q-value, and horizontal pleiotropy was assessed using MR-Egger regression and leave-one-out analysis. RESULTS: The IVW result, which is the main method of analysis, shows no evidence of a causal association between GC and any autoimmune disease. The results of IVW analysis show the relationship between rheumatoid arthritis (p = 0.1389), systemic lupus erythematosus (p = 0.1122), Crohn's disease (p = 0.1509), multiple sclerosis (p = 0.3944), primary sclerosing cholangitis (p = 0.9022), primary biliary cirrhosis (p = 0.7776), type 1 diabetes (p = 0.9595), ulcerative colitis (p = 0.5470), eczema (p = 0.3378), asthma (p = 0.7436), celiac disease (p = 0.4032), and psoriasis (p = 0.7622) and GC susceptibility. The same result was obtained with the weighted median and the MR-egger (p > 0.05). CONCLUSION: Our study did not find a genetic causal relationship between susceptibility to these autoimmune diseases and GC, which suggests that unmeasured confounders (e.g., inflammatory processes) or shared genetic architecture may be responsible for the reported epidemiologic associations. Further studies of ancestral diversity are warranted to validate such causal associations.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/genética
13.
Cancer Lett ; 575: 216398, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37730106

RESUMEN

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, and its molecular pathogenesis remains unclear. Here we explore the functional roles of epithelial membrane protein 3 (EMP3) in GBC progression, which is aberrantly expressed in various types of cancers. The results showed that the expression level of EMP3 was reduced in human GBC tissues compared with non-malignant tissues. Further, the low expression of EMP3 was associated with the poor prognosis of GBC patients by Kaplan-Meier analysis. The ectopic expression of EMP3 inhibited GBC cell proliferation, migration and invasion in vitro and in vivo. Conversely, the depletion of EMP3 promoted GBC cell growth and metastasis. In addition, we found that EMP3 was a target gene of miR-663a, and the downregulation of EMP3 in GBC was attributed to the overexpression of miR-663a. MiR-663a was also shown to be a tumor-promoting factor mediating GBC development. In this study, we demonstrate that downregulation of EMP3 activates MAPK/ERK signaling, which regulates GBC progression. These data reveal the mechanism by which EMP3 inhibits the progression of GBC, suggesting that the miR-663a/EMP3/MAPK/ERK axis may be a new therapeutic target for GBC treatment.

14.
Int J Biol Sci ; 18(7): 2759-2774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35541911

RESUMEN

The current performance of nature compounds in antitumor field is gradually attracted more and more attention, we discovered a nature active ingredient alizarin possess potent natural reductive NF-κB activity to against pancreatic cancer. However, the preclinical pharmacology and therapeutic effect, and the underlying mechanisms of alizarin in inhibiting pancreatic cancer are still unclear. After high-throughput screening, this is the first report that alizarin can induce a potent inhibitory effect against pancreatic cancer cells. Alizarin induced cell cycle arrest and promoted cell apoptosis by inhibiting TNF-α-stimulated NF-κB activity and nuclear translocation, and inactivated its related TNF-α-TAK1-NF-κB signaling cascade followed by downregulation of NF-κB target genes involved in cell apoptosis (Bcl-2, Bcl-xL, XIAP) and in the cell cycle and growth (cyclin D, c-myc). Due to the abrogation of NF-κB activity, combination of alizarin and gemcitabine exerted a better inhibitory effect on pancreatic cancer. In summary, natural component alizarin, inhibited cell proliferation and induced apoptosis in vitro and in vivo through targeting of the NF-κB signaling cascade with minimal toxicity, which combine with gemcitabine, can significantly enhance the antitumor capability, playing a synergistic effect. Therefore, alizarin may play a role in reversing gemcitabine resistance caused by overactivated NF-κB in clinical application in the future.


Asunto(s)
FN-kappa B , Neoplasias Pancreáticas , Antraquinonas , Apoptosis , Línea Celular Tumoral , Humanos , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
15.
Sci Rep ; 12(1): 13424, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927571

RESUMEN

The angle and position of the scapular glenoid are important in shoulder mechanics, the interpretation of diseases, and planning shoulder replacement surgery. In total shoulder replacement, understanding the bony parameters of the glenoid is also of considerable guiding significance for designing implant size and improving material adaptability. To compare glenoid parameters measured from skeletal scapula specimens with those measured by 3D modeling of CT scanning images, analyze correlations between these data, and draw conclusions to guide clinical treatment of shoulder joint injury and total shoulder joint replacement. The data of manual and CT measurements from the same Chinese dry glenoid was compared. Three-dimensional measurement data were collected from the Japanese population and compared with the Chinese population data generated in this study. There were no significant differences between manual measurement and CT measurement in the inclination angle, glenopolar angle, anteroposterior transverse diameter, upper to lower vertical diameter, and depth of the glenoid (P = 0.288, 0.524, 0.111, 0.194, and 0.055, respectively). Further, there were no significant differences between Japanese and Chinese glenoid bones in the upper and lower vertical diameters or anteroposterior transverse diameters (P > 0.05). There were no significant differences between CT and manual measurements, suggesting that the CT method may provide measurements very close to the actual specimen size. This result, however, indicated that the measurer should be careful when measuring the depth of the glenoid.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Cavidad Glenoidea , Lesiones del Hombro , Articulación del Hombro , Artroplastía de Reemplazo de Hombro/métodos , Cavidad Glenoidea/diagnóstico por imagen , Cavidad Glenoidea/cirugía , Humanos , Imagenología Tridimensional , Escápula/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía
16.
Orthop J Sports Med ; 9(11): 23259671211047269, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34820459

RESUMEN

BACKGROUND: The anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) contribute greatly to the overall stability of the ankle joint; however, ATFL and combined ATFL-CFL sprains are common. Anatomic reconstruction of the lateral collateral ligament with grafts has been proposed for patients with poor tissue quality or inadequate local tissue. Anatomic reconstruction of the lateral ankle ligaments requires a good understanding of their anatomic location. PURPOSE: To describe the anatomy of the ATFL and CFL ligaments quantitatively and qualitatively and explore the relationship of some morphological parameters. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 66 adult ankle specimens were analyzed for ATFL band type, origin, length, width, thickness, and angle between the ATFL and CFL, and 73 adult ankle specimens were used for measuring the origin of the CFL. The coefficient of variation was used to describe and compare the respective variability of angle, length, width, and thickness. The origin of the ATFL was labeled as point A, and the leading edge of the CFL intersection with the articular surface of the calcaneus was considered point B. RESULTS: The ATFL had a variable number of bands. A high degree of variability (coefficient of variation >0.2) was seen for most morphological measurements of the ATFL. In addition, the length of distance AB also varied. The CFL originated at the tip of the fibula in only 9% of specimens. It was found more commonly at the anterior border of the lateral malleolus (4.94 ± 1.70 mm from the tip). The angle between the ATFL and CFL was consistent at 100° to 105º. CONCLUSION: A fair amount of variability of ATFL length, width, and thickness were found in our study, with less variability in the ATFL-CFL angle. Most CFLs attached anterior to the tip of the fibula. CLINICAL RELEVANCE: Providing relevant anatomic data of ATFL and CFL is important in ensuring proper surgical treatment of ankle joint injuries.

17.
Onco Targets Ther ; 13: 2193-2202, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210585

RESUMEN

BACKGROUND: Ras-related GTP-binding protein 43 (RAB43) plays a key part in the progression of many human cancers. However, the role and functional mechanisms of RAB43 in gastric cancer (GC) remain unknown. PURPOSE: To elucidate the function and mechanism of RAB43 in the progression of GC. PATIENTS AND METHODS: One hundred patients with histologically confirmed GC were recruited for this study. Tumor samples and GC cell lines were used to detect RAB43 levels. Cell Counting Kit8 (CCK8) and colony formation assays were used to analyze cell proliferation. Cell migration and invasion ability were examined by wound healing and transwell assays. Western blot assays and quantitative real­time PCR (qRT-PCR) were performed to examine related mRNA and protein expression. In vivo experiments were used to examine the effect of RAB43. RESULTS: Patients with RAB43-positive tumors had worse overall survival than patients with RAB43-negative tumors. Downregulation of RAB43 significantly inhibited cell proliferation and cell metastasis. In contrast, RAB43 overexpression promoted proliferation and metastasis in normal gastric epithelial GES­1 cells. In vivo studies confirmed that RAB43 promoted tumor growth. In addition, the knockdown of RAB43 significantly inhibited cell proliferation and metastasis via phosphatidylinositol-3-kinases/protein-serine-threonine kinase (PI3K/AKT) pathway. CONCLUSION: RAB43 promotes GC cells proliferation and migration in vivo and in vitro and probably served as a novel potential therapeutic biomarker for GC.

18.
Sci Total Environ ; 739: 139622, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535458

RESUMEN

Land cover change (LCC) is a major part of environmental change. Exploring the spatiotemporal differences in LCC and the driving factors is the basis for comprehensive research on landscape planning, and it is of great significance for future effective and sustainable landscape management. In this respect, cross-scale research with integrated methods is worthy of more attention, although some studies have discussed the driving forces of LCCs at either regional or local scale. We combined a structural equation model and a mixed-effects model for quantifying the driving forces of LCCs across different scales in the Loess Plateau (China), which is a typical region that has experienced significant LCCs over recent decades. The impacts of biophysical and socioeconomic factors on different change trajectories (agricultural intensification, urbanization and ecological restoration) were found to be inconsistent at different temporal and spatial scales. We found that topography had a negative effect on agricultural intensification during 1990-2010 and on urbanization during 1990-2000, but it had a positive effect on ecological restoration during 2000-2015 at the regional scale. Moreover, although there was no significant impact from economic development on any type of LCCs at the regional scale, its important influence could be seen in some of the township categories. Therefore, the path and scale dependence of driving forces is an important consideration in landscape planning and management to accommodate local conditions and fine-tuned analysis as decision-making supports.

19.
J Exp Clin Cancer Res ; 38(1): 385, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481102

RESUMEN

In the original publication of this article [1], there are mistakes in Fig. 3A and Fig. 3D.

20.
Oncogene ; 38(8): 1269-1281, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30254209

RESUMEN

Karyopherin alpha 2 (KPNA2) is a nuclear import factor that is elevated in multiple cancers. However, its molecular regulation at the transcriptional levels is poorly understood. Here we found that KPNA2 was significantly upregulated in gallbladder cancer (GBC), and the increased levels were correlated with short survival of patients. Gene knocking down of KPNA2 inhibited tumor cell proliferation and migration in vitro as well as xenografted tumor development in vivo. A typical transcription factor E2F1 associated with its DNA-binding partner DP1 bond to the promoter region of KPNA2 and induced KPNA2 expression. In contrast, an atypical transcription factor E2F7 competed against DP1 and blocked E2F1-induced KPNA2 gene activation. Mutation of the dimerization residues of E2F7 or DNA-binding domain of E2F1 abolished the suppressive effects of E2F7 on KPNA2 gene expression. In addition, KPNA2 mediated nuclear localization of E2F1 and E2F7, where they in turn controlled KPNA2 expression. Taken together, our data provided mechanistic insights into divergently transcriptional regulation of KPNA2, thus pointing to KPNA2 as a potential target for cancer therapy.


Asunto(s)
Factor de Transcripción E2F1/genética , Factor de Transcripción E2F7/genética , Neoplasias de la Vesícula Biliar/genética , alfa Carioferinas/genética , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Factor de Transcripción DP1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA