Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139418

RESUMEN

Salinity stress is one of the major abiotic stresses affecting crop growth and production. Rice is an important food crop in the world, but also a salt-sensitive crop, and the rice seedling stage is the most sensitive to salt stress, which directly affects the final yield formation. In this study, two RIL populations derived from the crosses of CD (salt-sensitive)/WD (salt-tolerant) and KY131 (salt-sensitive)/XBJZ (salt-tolerant) were used as experimental materials, and the score of salinity toxicity (SST), the relative shoot length (RSL), the relative shoot fresh weight (RSFW), and the relative shoot dry weight (RSDW) were used for evaluating the degree of tolerance under salt stress in different lines. The genetic linkage map containing 978 and 527 bin markers were constructed in two RIL populations. A total of 14 QTLs were detected on chromosomes 1, 2, 3, 4, 7, 9, 10, 11, and 12. Among them, qSST12-1, qSST12-2, and qRSL12 were co-localized in a 140-kb overlap interval on chromosome 12, which containing 16 candidate genes. Furthermore, transcriptome sequencing and qRT-PCR were analyzed in CD and WD under normal and 120 mM NaCl stress. LOC_Os12g29330, LOC_Os12g29350, LOC_Os12g29390, and LOC_Os12g29400 were significantly induced by salt stress in both CD and WD. Sequence analysis showed that LOC_Os12g29400 in the salt-sensitive parents CD and KY131 was consistent with the reference sequence (Nipponbare), whereas the salt-tolerant parents WD and XBJZ differed significantly from the reference sequence both in the promoter and exon regions. The salt-tolerant phenotype was identified by using two T3 homozygous mutant plants of LOC_Os12g29400; the results showed that the score of salinity toxicity (SST) of the mutant plants (CR-3 and CR-5) was significantly lower than that of the wild type, and the seedling survival rate (SSR) was significantly higher than that of the wild type, which indicated that LOC_Os12g29400 could negatively regulate the salinity tolerance of rice at the seedling stage. The results lay a foundation for the analysis of the molecular mechanism of rice salinity tolerance and the cultivation of new rice varieties.


Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/genética , Plantones/genética , Transcriptoma , Salinidad , Análisis de Secuencia
2.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955626

RESUMEN

Caffeic acid O-methyltransferase (COMT) is one of the core enzymes involved in lignin synthesis. However, there is no systematic study on the rice COMT gene family. We identified 33 COMT genes containing the methyltransferase-2 domain in the rice genome using bioinformatic methods and divided them into Group I (a and b) and Group II. Motifs, conserved domains, gene structure and SNPs density are related to the classification of OsCOMTs. The tandem phenomenon plays a key role in the expansion of OsCOMTs. The expression levels of fourteen and thirteen OsCOMTs increased or decreased under salt stress and drought stress, respectively. OsCOMTs showed higher expression levels in the stem. The lignin content of rice was measured in five stages; combined with the expression analysis of OsCOMTs and multiple sequence alignment, we found that OsCOMT8, OsCOMT9 and OsCOMT15 play a key role in the synthesis of lignin. Targeted miRNAs and gene ontology annotation revealed that OsCOMTs were involved in abiotic stress responses. Our study contributes to the analysis of the biological function of OsCOMTs, which may provide information for future rice breeding and editing of the rice genome.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
3.
Mol Genet Genomic Med ; 11(8): e2185, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37070846

RESUMEN

BACKGROUND: GJB2 mutations are among the most important causes of deafness, and their prevalence varies greatly among different countries and ethnic groups. This study aimed to determine the pathogenic mutation spectrum of GJB2 in patients with nonsyndromic hearing loss (NSHL) in Western Guangdong and to explore the pathogenic characteristics of the c.109G>A locus. METHODS: In total, 97 NSHL patients and 212 normal controls (NC) were included in this study. Genetic sequencing analyses were performed on GJB2. RESULTS: In the NSHL group, the main pathogenic mutations in GJB2 were as follows: c.109G>A, c.235delC, and c.299_300delAT with allele frequencies of 9.28%, 4.12%, and 2.06%, respectively. c.109G>A was the most frequently detected pathogenic mutation in this region. In the NC group, the allele frequency of c.109G>A among 30-50 years old subjects was markedly lower than that among 0-30 years old subjects (5.31% vs. 11.11%, p < 0.05). CONCLUSION: We found the pathogenic mutation spectrum of GJB2 in this region and showed that c.109G>A was the most common GJB2 mutation with unique characteristics, such as clinical phenotypic heterogeneity and delayed onset. Therefore, the c.109G>A mutation should be considered as an essential marker for routine genetic assessment of deafness, which can also be beneficial for preventing deafness.


Asunto(s)
Conexina 26 , Sordera , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Adulto Joven , Conexina 26/genética , Sordera/genética , Mutación
4.
Front Plant Sci ; 14: 1184416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235029

RESUMEN

Background: Salinity tolerance plays a vital role in rice cultivation because the strength of salinity tolerance at the seedling stage directly affects seedling survival and final crop yield in saline soils. Here, we combined a genome-wide association study (GWAS) and linkage mapping to analyze the candidate intervals for salinity tolerance in Japonica rice at the seedling stage. Results: We used the Na+ concentration in shoots (SNC), K+ concentration in shoots (SKC), Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) as indices to assess the salinity tolerance at the seedling stage in rice. The GWAS identified the lead SNP (Chr12_20864157), associated with an SNK, which the linkage mapping detected as being in qSK12. A 195-kb region on chromosome 12 was selected based on the overlapping regions in the GWAS and the linkage mapping. Based on haplotype analysis, qRT-PCR, and sequence analysis, we obtained LOC_Os12g34450 as a candidate gene. Conclusion: Based on these results, LOC_Os12g34450 was identified as a candidate gene contributing to salinity tolerance in Japonica rice. This study provides valuable guidance for plant breeders to improve the response of Japonica rice to salt stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA