Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921011

RESUMEN

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731861

RESUMEN

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Asunto(s)
Trampas Extracelulares , Lactoferrina , Moléculas de Adhesión de Célula Nerviosa , Ácidos Siálicos , Lactoferrina/farmacología , Lactoferrina/metabolismo , Humanos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Heparina de Bajo-Peso-Molecular/farmacología
3.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37615033

RESUMEN

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Asunto(s)
Movimiento Celular
4.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111064

RESUMEN

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Imagen por Resonancia Magnética/métodos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerizacion , Conformación Proteica , Dominios Proteicos
5.
Artículo en Zh | MEDLINE | ID: mdl-22919752

RESUMEN

OBJECTIVE: To evaluate the susceptibility of C6 glioma cells to Myxoma virus and the killing effect of Myxoma virus to the C6 glioma cells in vitro. METHODS: C6 glioma cells were infected with myxoma virus, used death virus as the negative control, 5-FU as the positive control, DEMD as blank control. The number of living cells were counted every 24 h, and Western-Blot method, inverted microscope and MTT assay were applicated to observe the cell morphology and survival rate in each group. RESULTS: The cell number were decreased rapidly in virus effected group and 5-FU group, with significant differences to the negative and blank control groups. And cells in virus effected group appeared cytopathic effect. CONCLUSIONS: C6 glioma cells were susceptible to myxoma virus and myxoma virus had killing effect to C6 glioma cells in vitro.


Asunto(s)
Glioma/terapia , Viroterapia Oncolítica , Línea Celular Tumoral , Humanos , Myxoma virus , Proteínas Proto-Oncogénicas c-akt/fisiología
6.
Artículo en Zh | MEDLINE | ID: mdl-23002546

RESUMEN

OBJECTIVE: To explore the in vivo effects of myxoma virus (MV) on gliomas of rat model. Methods C6 glioma cells were implanted into the frontal lobe of SD rats using stereotactic methods to establish animal models of glioma. METHODS: C6 glioma cells were implanted into the frontal lobe of SD rats using stereotactic methods to establish animal models of glioma. Models were divided into 4 groups randomly after tumor growth was affirmed, and MV, 5-FU, MV + 5-FU, and denatured myxoma virus (DV) were implanted into the tumors using stereotactic methods, bodyweight, tumor size, expression of glial fibrillary acidic protein (GFAP), Akt of each model were observed. RESULTS: The gliomas in all SD rats were established successfully. And tumor growth in MV, 5-FU, MV + 5-FU were significantly decreased as compared with DV group after injection, sizes of some tumors were lessened, and GFAP expression decreased in MV, 5-FU and MV +5-FU groups. The expression of PI3k, Akt and mTOR were decreased in MV and MV +5-FU groups. CONCLUSION: C6 glioma SD rat models could be established successfully using stereotactic methods. MV may enhance biological activity of chemotherapeutic drugs on tumor cells of animal models in vivo by regulating some genes of PI3K-Akt-mTOR signal pathway.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Myxoma virus , Viroterapia Oncolítica , Animales , Modelos Animales de Enfermedad , Femenino , Fluorouracilo/uso terapéutico , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA