Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 609(7927): 479-484, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104555

RESUMEN

Studying strong electron correlations has been an essential driving force for pushing the frontiers of condensed matter physics. In particular, in the vicinity of correlation-driven quantum phase transitions (QPTs), quantum critical fluctuations of multiple degrees of freedom facilitate exotic many-body states and quantum critical behaviours beyond Landau's framework1. Recently, moiré heterostructures of van der Waals materials have been demonstrated as highly tunable quantum platforms for exploring fascinating, strongly correlated quantum physics2-22. Here we report the observation of tunable quantum criticalities in an experimental simulator of the extended Hubbard model with spin-valley isospins arising in chiral-stacked twisted double bilayer graphene (cTDBG). Scaling analysis shows a quantum two-stage criticality manifesting two distinct quantum critical points as the generalized Wigner crystal transits to a Fermi liquid by varying the displacement field, suggesting the emergence of a critical intermediate phase. The quantum two-stage criticality evolves into a quantum pseudo criticality as a high parallel magnetic field is applied. In such a pseudo criticality, we find that the quantum critical scaling is only valid above a critical temperature, indicating a weak first-order QPT therein. Our results demonstrate a highly tunable solid-state simulator with intricate interplay of multiple degrees of freedom for exploring exotic quantum critical states and behaviours.

2.
Nat Mater ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664497

RESUMEN

In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.

3.
Nano Lett ; 23(21): 9928-9935, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37862098

RESUMEN

Memristors have attracted considerable attention in the past decade, holding great promise for future neuromorphic computing. However, the intrinsic poor stability and large device variability remain key limitations for practical application. Here, we report a simple method to directly visualize the origin of poor stability. By mechanically removing the top electrodes of memristors operated at different states (such as SET or RESET), the memristive layer could be exposed and directly characterized through conductive atomic force microscopy, providing two-dimensional area information within memristors. Based on this technique, we observed the existence of multiple conducting filaments during the formation process and built up a physical model between filament numbers and the cycle-to-cycle variation. Furthermore, by improving the interface quality through the van der Waals top electrode, we could reduce the filament number down to a single filament during all switching cycles, leading to much controlled switching behavior and reliable device operation.

4.
Phys Rev Lett ; 126(22): 227402, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34152189

RESUMEN

As a newly emergent type-II Dirac semimetal, platinum telluride (PtTe_{2}) stands out from other two dimensional noble-transition-metal dichalcogenides for the unique band structure and novel physical properties, and has been studied extensively. However, the ultrafast response of low energy quasiparticle excitation in terahertz frequency remains nearly unexplored yet. Herein, we employ optical pump-terahertz probe (OPTP) spectroscopy to systematically study the photocarrier dynamics of PtTe_{2} thin films with varying pump fluence, temperature, and film thickness. Upon photoexcitation the terahertz photoconductivity (PC) of PtTe_{2} films shows abrupt increase initially, while the terahertz PC changes into negative value in a subpicosecond timescale, followed by a prolonged recovery process that lasted a few nanoseconds. The magnitude of both positive and negative terahertz PC response shows strongly pump fluence dependence. We assign the unusual negative terahertz PC to the formation of small polaron due to the strong electron-phonon (e-ph) coupling, which is further substantiated by temperature and film thickness dependent measurements. Moreover, our investigations give a subpicosecond timescale of simultaneous carrier cooling and polaron formation. The present study provides deep insights into the underlying dynamics evolution mechanisms of photocarrier in type-II Dirac semimetal upon photoexcitation, which is of crucial importance for designing PtTe_{2}-based optoelectronic devices.

5.
Small ; 16(4): e1905902, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31867892

RESUMEN

Semiconducting nanowires offer many opportunities for electronic and optoelectronic device applications due to their unique geometries and physical properties. However, it is challenging to synthesize semiconducting nanowires directly on a SiO2 /Si substrate due to lattice mismatch. Here, a catalysis-free approach is developed to achieve direct synthesis of long and straight InSe nanowires on SiO2 /Si substrates through edge-homoepitaxial growth. Parallel InSe nanowires are achieved further on SiO2 /Si substrates through controlling growth conditions. The underlying growth mechanism is attributed to a selenium self-driven vapor-liquid-solid process, which is distinct from the conventional metal-catalytic vapor-liquid-solid method widely used for growing Si and III-V nanowires. Furthermore, it is demonstrated that the as-grown InSe nanowire-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of 271 A W-1 , ultrahigh detectivity of 1.57 × 1014 Jones, and a fast response speed of microsecond scale. The excellent performance of the photodetector indicates that as-grown InSe nanowires are promising in future optoelectronic applications. More importantly, the proposed edge-homoepitaxial approach may open up a novel avenue for direct synthesis of semiconducting nanowire arrays on SiO2 /Si substrates.

6.
Nano Lett ; 19(6): 3969-3975, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31082263

RESUMEN

Since the discovery of extremely large nonsaturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of the large nonsaturating MR through in situ tuning of the magneto-transport properties in thin WTe2 film. With an electrostatic doping approach, we observed a nonmonotonic gate dependence of the MR. The MR reaches a maximum (10600%) in thin WTe2 film at certain gate voltage where electron and hole concentrations are balanced, indicating that the charge compensation is the dominant mechanism of the observed large MR. Besides, we show that the temperature-dependent magnetoresistance exhibits similar tendency with the carrier mobility when the charge compensation is retained, revealing that distinct scattering mechanisms may be at play for the temperature dependence of magneto-transport properties. Our work would be helpful for understanding mechanism of the large MR in other nonmagnetic materials and offers an avenue for achieving large MR in the nonmagnetic materials with electron-hole pockets.

7.
Nano Lett ; 18(12): 7962-7968, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30403355

RESUMEN

Due to the nontrivial topological band structure in type II Weyl semi-metal tungsten ditelluride (WTe2), unconventional properties may emerge in its superconducting phase. While realizing intrinsic superconductivity has been challenging in the type II Weyl semi-metal WTe2, the proximity effect may open an avenue for the realization of superconductivity. Here, we report the observation of proximity-induced superconductivity with a long coherence length along the c axis in WTe2 thin flakes based on a WTe2/NbSe2 van der Waals heterostructure. Interestingly, we also observe anomalous oscillations of the differential resistance during the transition from the superconducting to the normal state. Theoretical calculations show excellent agreement with experimental results, revealing that such a subgap anomaly is the intrinsic property of WTe2 in superconducting state induced by the proximity effect. Our findings enrich the understanding of the superconducting phase of type II Weyl semi-metals and pave the way for their future applications in topological quantum computing.

8.
Nano Lett ; 18(12): 7538-7545, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30480455

RESUMEN

Nanostructuring is an extremely promising path to high-performance thermoelectrics. Favorable improvements in thermal conductivity are attainable in many material systems, and theoretical work points to large improvements in electronic properties. However, realization of the electronic benefits in practical materials has been elusive experimentally. A key challenge is that experimental identification of the quantum confinement length, below which the thermoelectric power factor is significantly enhanced, remains elusive due to lack of simultaneous control of size and carrier density. Here we investigate gate-tunable and temperature-dependent thermoelectric transport in γ-phase indium selenide (γ-InSe, n-type semiconductor) samples with thickness varying from 7 to 29 nm. This allows us to properly map out dimension and doping space. Combining theoretical and experimental studies, we reveal that the sharper pre-edge of the conduction-band density of states arising from quantum confinement gives rise to an enhancement of the Seebeck coefficient and the power factor in the thinner InSe samples. Most importantly, we experimentally identify the role of the competition between quantum confinement length and thermal de Broglie wavelength in the enhancement of power factor. Our results provide an important and general experimental guideline for optimizing the power factor and improving the thermoelectric performance of two-dimensional layered semiconductors.

9.
Nano Lett ; 18(2): 1410-1415, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29385803

RESUMEN

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field Bc2, (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane Bc2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

10.
Nanotechnology ; 28(21): 214002, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28471746

RESUMEN

We study electrical transport properties in exfoliated molybdenum disulfide (MoS2) back-gated field effect transistors at low drain bias and under different illumination intensities. It is found that photoconductive and photogating effect as well as space charge limited conduction can simultaneously occur. We point out that the photoconductivity increases logarithmically with the light intensity and can persist with a decay time longer than 104 s, due to photo-charge trapping at the MoS2/SiO2 interface and in MoS2 defects. The transfer characteristics present hysteresis that is enhanced by illumination. At low drain bias, the devices feature low contact resistance of [Formula: see text] ON current as high as [Formula: see text] 105 ON-OFF ratio, mobility of ∼1 cm2 V-1 s-1 and photoresponsivity [Formula: see text].

11.
Nat Nanotechnol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965346

RESUMEN

Quantum materials exhibit dissipationless topological edge state transport with quantized Hall conductance, offering notable potential for fault-tolerant computing technologies. However, the development of topological edge state-based computing devices remains a challenge. Here we report the selective and quasi-continuous ferroelectric switching of topological Chern insulator devices, showcasing a proof-of-concept demonstration in noise-immune neuromorphic computing. We fabricate this ferroelectric Chern insulator device by encapsulating magic-angle twisted bilayer graphene with doubly aligned h-BN layers and observe the coexistence of the interfacial ferroelectricity and the topological Chern insulating states. The observed ferroelectricity exhibits an anisotropic dependence on the in-plane magnetic field. By tuning the amplitude of the gate voltage pulses, we achieve ferroelectric switching between any pair of Chern insulating states in the presence of a finite magnetic field, resulting in 1,280 ferroelectric states with distinguishable Hall resistance levels on a single device. Furthermore, we demonstrate deterministic switching between two arbitrary levels among the record-high number of ferroelectric states. This unique switching capability enables the implementation of a convolutional neural network resistant to external noise, utilizing the quantized Hall conductance levels of the Chern insulator device as weights. Our study provides a promising avenue towards the development of topological quantum neuromorphic computing, where functionality and performance can be drastically enhanced by topological quantum materials.

12.
Nat Commun ; 15(1): 4953, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858363

RESUMEN

Nonreciprocal quantum transport effect is mainly governed by the symmetry breaking of the material systems and is gaining extensive attention in condensed matter physics. Realizing electrical switching of the polarity of the nonreciprocal transport without external magnetic field is essential to the development of nonreciprocal quantum devices. However, electrical switching of superconducting nonreciprocity remains yet to be achieved. Here, we report the observation of field-free electrical switching of nonreciprocal Ising superconductivity in Fe3GeTe2/NbSe2 van der Waals (vdW) heterostructure. By taking advantage of this electrically switchable superconducting nonreciprocity, we demonstrate a proof-of-concept nonreciprocal quantum neuronal transistor, which allows for implementing the XOR logic gate and faithfully emulating biological functionality of a cortical neuron in the brain. Our work provides a promising pathway to realize field-free and electrically switchable nonreciprocity of quantum transport and demonstrate its potential in exploring neuromorphic quantum devices with both functionality and performance beyond the traditional devices.

13.
Adv Mater ; : e2406984, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039978

RESUMEN

The photovoltaic effect is gaining growing attention in the optoelectronics field due to its low power consumption, sustainable nature, and high efficiency. However, the photovoltaic effects hitherto reported are hindered by the stringent band-alignment requirement or inversion symmetry-breaking, and are challenging for achieving multifunctional photovoltaic properties (such as reconfiguration, nonvolatility, and so on). Here, a novel ionic photovoltaic effect in centrosymmetric CdSb2Se3Br2 that can overcome these limitations is demonstrated. The photovoltaic effect displays significant anisotropy, with the photocurrent being most apparent along the CdBr2 chains while absent perpendicular to them. Additionally, the device shows electrically-induced nonvolatile photocurrent switching characteristics. The photovoltaic effect is attributed to the modulation of the built-in electric field through the migration of Br ions. Using these unique photovoltaic properties, a highly secure circuit with electrical and optical keys is successfully implemented. The findings not only broaden the understanding of the photovoltaic mechanism, but also provide a new material platform for the development of in-memory sensing and computing devices.

14.
Nat Commun ; 15(1): 1129, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321042

RESUMEN

The spin Hall effect (SHE) allows efficient generation of spin polarization or spin current through charge current and plays a crucial role in the development of spintronics. While SHE typically occurs in non-magnetic materials and is time-reversal even, exploring time-reversal-odd (T-odd) SHE, which couples SHE to magnetization in ferromagnetic materials, offers a new charge-spin conversion mechanism with new functionalities. Here, we report the observation of giant T-odd SHE in Fe3GeTe2/MoTe2 van der Waals heterostructure, representing a previously unidentified interfacial magnetic spin Hall effect (interfacial-MSHE). Through rigorous symmetry analysis and theoretical calculations, we attribute the interfacial-MSHE to a symmetry-breaking induced spin current dipole at the vdW interface. Furthermore, we show that this linear effect can be used for implementing multiply-accumulate operations and binary convolutional neural networks with cascaded multi-terminal devices. Our findings uncover an interfacial T-odd charge-spin conversion mechanism with promising potential for energy-efficient in-memory computing.

15.
Sci Adv ; 9(39): eadi4083, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774015

RESUMEN

Parallel perception of visual motion is of crucial significance to the development of an intelligent machine vision system. However, implementing in-sensor parallel visual motion perception using conventional complementary metal-oxide semiconductor technology is challenging, because the temporal and spatial information embedded in motion cannot be simultaneously encoded and perceived at the sensory level. Here, we demonstrate the parallel perception of diverse motion modes at the sensor level by exploiting light-tunable memory matrix in a van der Waals (vdW) heterostructure array. The optoelectronic characteristics of gate-tunable photoconductivity and light-tunable memory matrix enable devices in the array to realize simultaneous encoding and processing of incoming spatiotemporal light pattern. Furthermore, we implement a visual motion perceptron with the array capable of deciphering multiple motion parameters in parallel, including direction, velocity, acceleration, and angular velocity. Our work opens up a promising venue for the realization of an intelligent machine vision system based on in-sensor motion perception.

16.
J Leukoc Biol ; 112(5): 1223-1231, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35612272

RESUMEN

Knowledge about the diversity microglia (MG) type and function in the rodent and human brain has advanced significantly in the last few years. Nevertheless, we have known for 40 years that MG, monocytes, and macrophages in the brain play crucial roles in the pathogenesis of the HIV-1 in all tissues. HIV enters and spreads in the brain early, long before the initiation of antiviral therapy. As a result, many people with HIV continue to experience neurologic and neuropsychiatric comorbid conditions collectively known as HIV-associated neurocognitive disorder (HAND). HIV pathogenic sequelae in the CNS pose a challenge for cure strategies. Detailed understanding at a mechanistic level of how low-level and latent HIV-1 infection in MG negatively impacts neuroglial function has remained somewhat elusive. Direct rigorous in vivo experimental validation that the virus can integrate into MG and assume a latent but reactivatable state has remained constrained. However, there is much excitement that human in vitro models for MG can now help close the gap. This review will provide a brief background to place the role of MG in the ongoing neurologic complications of HIV infection of the CNS, then focus on the use and refinement of human postmitotic monocyte-derived MG-like cells and how they are being applied to advance research on HIV persistence and proinflammatory signaling in the CNS. Critically, an understanding of myeloid plasticity and heterogeneity and rigorous attention to all aspects of cell handling is essential for reproducibility. Summary Sentence: This review focuses on human postmitotic monocyte-derived microglia-like cells as tools to advance research on HIV persistence and neuroinflammatory signaling.


Myeloid plasticity: The phenotype and function of myeloid cells (monocytes, macrophages, and microglia) are shaped and regulated by intercellular signals. These include cytokines, chemokines, and other cues from neighboring cells in the tissue microenvironment. In addition, paracrine and autocrine signals under the homeostatic state are altered with injury, stress, infection, or chronic disease conditions. In responding to these cues, myeloid cells undergo some or all of the following: morphologic changes, altered metabolism, variation of components released into the extracellular matrix, increased migration, cytokine/chemokine production, and phagocytosis. Human monocyte-derived microglia (hMMGS): Purified subpopulations of bone marrow-derived monocytes incubated in highly defined in vitro culture conditions that support the development of microglia-like cells. Their phenotype closely resembles primary cells (e.g., TMEM119, CXC3R1, P2YR12, PU.1, IRF8), and functionally, hMMGs are phagocytic and possess synaptic pruning and calcium signaling activity.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Microglía , Infecciones por VIH/tratamiento farmacológico , Investigación Biomédica Traslacional , Reproducibilidad de los Resultados , Latencia del Virus , Encéfalo/patología , Antivirales/uso terapéutico
17.
ACS Nano ; 16(3): 4528-4535, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167274

RESUMEN

With the rising demand for information security, there has been a surge of interest in harnessing the intrinsic physical properties of device for designing a secure logic circuit. Here we provide an innovative approach to realize the secure optoelectronic logic circuit based on nonvolatile van der Waals (vdW) heterostructure phototransistors. The phototransistors comprising WSe2 and h-BN flakes exhibit electrical tunability of nonvolatile conductance under cooperative operations of electrical and light stimulus. This intriguing feature allows the phototransistor to work as a building block for the design of secure optoelectronic logic circuit in which the information encryption can be directly achieved with a designed secret key. On the basis of this approach, we assemble two phototransistors into an optoelectronic hybrid circuit and implement a functionally complete set of logic gates (i.e., NOR, XOR, and NAND) in a reconfigurable manner. Our findings highlight the potential of nonvolatile phototransistors for the development of reconfigurable secure optoelectronic circuits.

18.
Adv Mater ; 34(47): e2206196, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36121643

RESUMEN

Realizing both ultralow breakdown voltage and ultrahigh gain is one of the major challenges in the development of high-performance avalanche photodetector. Here, it is reported that an ultrahigh avalanche gain of 3 × 105 can be realized in the graphite/InSe Schottky photodetector at a breakdown voltage down to 5.5 V. Remarkably, the threshold breakdown voltage can be further reduced down to 1.8 V by raising the operating temperature, approaching the theoretical limit of 1.5 E g \[{{\cal E}_{\bf g}}\] /e, with E g ${{\cal E}_{\bf g}}$ the bandgap of semiconductor. A 2D impact ionization model is developed and it is uncovered that observation of high gain at low breakdown voltage arises from reduced dimensionality of electron-phonon scattering in the layered InSe flake. These findings open up a promising avenue for developing novel weak-light detectors with low energy consumption and high sensitivity.

19.
Sci Adv ; 8(49): eabq6833, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490344

RESUMEN

The building block of in-memory computing with spintronic devices is mainly based on the magnetic tunnel junction with perpendicular interfacial anisotropy (p-MTJ). The resulting asymmetric write and readout operations impose challenges in downscaling and direct cascadability of p-MTJ devices. Here, we propose that a previously unimplemented symmetric write and readout mechanism can be realized in perpendicular-anisotropy spin-orbit (PASO) quantum materials based on Fe3GeTe2 and WTe2. We demonstrate that field-free and deterministic reversal of the perpendicular magnetization can be achieved using unconventional charge-to-z-spin conversion. The resulting magnetic state can be readily probed with its intrinsic inverse process, i.e., z-spin-to-charge conversion. Using the PASO quantum material as a fundamental building block, we implement the functionally complete set of logic-in-memory operations and a more complex nonvolatile half-adder logic function. Our work highlights the potential of PASO quantum materials for the development of scalable energy-efficient and ultrafast spintronic computing.

20.
Adv Mater ; 34(42): e2205996, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36043946

RESUMEN

Moiré superlattices that consist of two or more layers of 2D materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional superconductivity, and quantum anomalous Hall effect. Recently, magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the as-yet unexplored band structure of MATTG near charge neutrality is systematically measured. These measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA