Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(17): 7554-7566, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38647007

RESUMEN

Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.


Asunto(s)
Coloides , Fósforo , Suelo , Suelo/química , Coloides/química , Microbiología del Suelo , ARN Ribosómico 16S , Bacterias/metabolismo
2.
J Environ Manage ; 352: 120109, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232586

RESUMEN

Colloidal phosphorus (P) is an important P form in agricultural runoff and can threaten water quality. However, up to date, there are few effective approaches to mitigate colloidal P pollution. This study investigated the effect of ultraviolet (UV) irradiation on medium-colloidal (MC; 220 nm-450 nm) and fine-colloidal (FC; 3 kDa-220 nm) P in agricultural runoff. Under 24 h of UV irradiation, as the most abundant colloidal P fraction, concentration of total P (TP) in FC consistently decreased by 81.0%, while TP concentration in MC first increased by 74.4% after 3 h and then decreased with irradiation time. At the same time, particulate TP (>450 nm) concentration was found to be increased from 0 to 14.7 µM. However, there were no obvious variations in TP concentrations in FC and MC fractions under dark conditions. In FC fraction, with the decrease of TP, the corresponding concentrations of iron (Fe), aluminum (Al), silicon (Si) declined synchronously, and ferric iron/ferrous iron (Fe(III)/Fe(II)) ratio and organic matter (OM) concentration were reduced as well. These results suggested that P in FC fraction was gradually transformed into particulate P during photoreduction of Fe(III) and photodegradation of OM under UV irradiation. Our study helps to understand the mechanism of the phototransformation of colloidal P, and propose an UV irradiation-based approach to remove colloidal P in agricultural runoff.


Asunto(s)
Compuestos Férricos , Fósforo , Fósforo/análisis , Agricultura , Calidad del Agua , Hierro
3.
Environ Sci Technol ; 57(43): 16564-16574, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862689

RESUMEN

The bioavailability for varied-size phosphorus (P)-binding colloids (Pcoll) especially from external P sources in soil terrestrial ecosystems remains unclear. This study evaluated the differential contribution of various-sized biogas slurry (BS)-derived colloids to plant available P uptake in the rhizosphere and the corresponding patterns of phosphatase response. Keeping the same content of total P input (15 mg kg-1), we applied different size-fractioned BS-derived colloids including nanosized colloids (NCs, 1-20 nm), fine-sized colloids (FCs, 20-220 nm), and medium-sized colloids (MCs, 220-450 nm) respectively to conduct a 45-day rice (Oryza sativa L.) rhizotron experiment. During the whole cultivation period, the dynamics of chemical characteristics and P fractions in each experimental rhizosphere soil solution were analyzed. The spatial and temporal dynamics examination of P-transforming enzymes (acid phosphatases) in the rice rhizosphere was visualized by a soil zymography technique after 5, 25, and 45 days of rice transplantation. The results indicated that the acid phosphatase activities and its hot spot areas were significantly 1) correlated with the relative bioavailability of colloidal P (RBAcoll), 2) increased with the colloid-free (truly dissolved P) and BS-derived NC addition, and 3) affected by the plant growth stage. With the nanosized BS colloid addition, the RBAcoll and plant biomass were respectively found to be the highest (64% and 1.22 g plant-1), in which the acid phosphatase-catalyzed hydrolysis of organic Pcoll played an important role. All of the above suggested that nanosized BS-derived colloids are an effective alternative to conventional phosphorus fertilizer for promoting plant P uptake and P bioavailability.


Asunto(s)
Biocombustibles , Oryza , Monoéster Fosfórico Hidrolasas , Ecosistema , Suelo/química , Coloides/química , Fertilizantes , Fósforo , Fosfatasa Ácida
4.
Environ Res ; 220: 115222, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610537

RESUMEN

Soil colloids have been shown to play a critical role in soil phosphorus (P) mobility and transport. However, identifying the potential mechanisms behind colloidal P (Pcoll) release and the key influencing factors remains a blind spot. Herein, a machine learning approach (random forest (RF) coupled with partial dependence plot analyses) was applied to determine the effects of different soil physicochemical parameters on Pcoll content in three colloidal subfractions (i.e., nano- (NC): 1-20 nm, fine- (FC): 20-220 nm and medium-sized colloids (MC): 220-450 nm) based on a regional dataset of 12 farmlands in Zhejiang Province, China. RF successfully predicted Pcoll content (R2 = 0.98). Results showed that colloidal- organic carbon (OCcoll) and minerals were the major determinants of total Pcoll content (1-450 nm); their critical values for increasing Pcoll release were 87.0 mg L-1 for OCcoll, 11.0 mg L-1 for iron (Fecoll) or aluminium (Alcoll), 2.6 mg L-1 for calcium (Cacoll), 9.0 mg L-1 for magnesium (Mgcoll), 2.5 mg L-1 for silicon (Sicoll), and 1.4 mg L-1 for manganese (Mncoll). Among three colloidal subfractions, the major factors determining Pcoll were soil Olsen-P (POlsen; 125.0 mg kg-1), Cacoll (2.5 mg L-1), and colloidal P saturation (21.0%) in NC; Mncoll (1.5 mg L-1), Mgcoll (6.8 mg L-1), and POlsen (135.0 mg kg-1) in FC; while Mncoll (1.5 mg L-1), Alcoll (2.5 mg L-1), and Fecoll (3.8 mg L-1) in MC, respectively. OCcoll had a considerable effect in the three fractions, with critical values of 80.0 mg L-1 in NC or FC, and 50.0 mg L-1 in MC. Our study concluded that the information gleaned using the RF model can be used as crucial evidence to identify the key determinants of different size fractionated Pcoll contents. However, we still need to discover one or more easy-to-measure parameters that can help us better predict Pcoll.


Asunto(s)
Fósforo , Suelo , Suelo/química , Fósforo/análisis , Agricultura , Minerales , Coloides
5.
J Environ Manage ; 326(Pt A): 116745, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375438

RESUMEN

Colloidal phosphorus (Pcoll) in paddy soils can pose a serious threat to the water environment. Biochar amendment not only directly absorb Pcoll to reduce the runoff loss, but also create hotspots for microbial communities which simultaneously affects soil Pcoll. However, despite the crucial role of microorganisms, it remains elusive regarding how biochar and its feedstock types affect the relationships of soil microbial communities and Pcoll in soil matrix (such as at soil aggregate level). To address the knowledge gap, we explored the (in)direct effects of biochar on the soil Pcoll in physically separated fractions including micro- (53-250 µm) and macroaggregates (250-2000 µm). Results showed that straw and manure biochars decreased the soil Pcoll content by 55.2-56.7% in microaggregates and 41.2-48.4% in macroaggregates after 120 days of incubation, compared to the respective control. The fungal communities showed a significantly correlation (0.34, p < 0.05) with Pcoll content in the macroaggregates, whereas the bacterial communities were extremely significantly correlated (0.66, p < 0.001) with Pcoll content in the microaggregates. Furthermore, the partial least squares path model analysis indicated that biochar amendments directly increased Pcoll content (0.76 and 0.61) in micro- and macroaggregates, but the reduced Pcoll content by biochar was mainly derived from indirect effects, such as changed soil biological characteristics carbon (C)/P (-0.69), microbial biomass C (-0.63), microbial biomass P (-0.68), keystone taxa Proteobacteria (-0.63), and Ascomycota (-0.59), particularly for the macroaggregates. This study highlights that to some extent, biochar addition can reduce soil Pcoll content by affecting microbial communities (some keystone taxa), and soil biological characteristics at soil aggregate level.


Asunto(s)
Microbiota , Suelo , Fósforo , Microbiología del Suelo , Carbón Orgánico
6.
J Environ Manage ; 304: 114214, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34864519

RESUMEN

The agricultural use of manure fertilizer increases the phosphorus (P) saturation of soils and the risk of colloidal P (Pcoll) release to aquatic ecosystems. Two experiments were conducted to identify whether Pteris vittata plantation can decrease Pcoll contents in two soils (Cambisol and Anthrosol) amended with various manure P rates (0, 10, 25, and 50 mg P kg-1 of soil). The total Pcoll contents in manured soil without P. vittata were 1.14-3.37 mg kg-1 (Cambisol), and 0.01-2.83 mg kg-1 (Anthrosol) across manure-P rates. The corresponding values with P. vittata were 0.97-2.33 mg kg-1 (Cambisol) and 0.005-1.6 mg kg-1 (Anthrosol). Experimentally determined colloidal minerals (Fe, Al, Ca), colloidal total organic carbon, Mehlich-3 nutrients (Fe, Al, and Ca), and the degree of P saturation were good predictors of Pcoll concentrations in both soils with and without P. vittata plantation. In unplanted soils, P adsorption decreased and the degree of P saturation increased which released more Pcoll. However, P. vittata plantation decreased the Pcoll release and P loss risk due to the increase of P adsorption and reduced DPS in both soils. The P fractions (NaOH, NH4F, and HCl-P) contributed to increase the P pool in planted soils which enhanced the bioavailability of Pcoll and increased the P. vittata biomass. It suggested that P. vittata plantation was an effective approach to reduce Pcoll release from manure amended soils.


Asunto(s)
Estiércol , Pteris , Ecosistema , Fósforo , Suelo
7.
Environ Sci Technol ; 55(19): 13093-13102, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34550673

RESUMEN

Phosphate as one of the most essential components of living systems, robust analytical techniques available for phosphate sensing in natural waters and soils are essential for monitoring and predicting water quality and agronomic evaluation of phosphate. Using cyclic voltammetry, a point-of-use electrochemical sensor zirconium dioxide/zinc oxide/multiple-wall carbon nanotubes/ammonium molybdate tetrahydrate/screen printed electrode (ZrO2/ZnO/MWCNTs/AMT/SPE) was applied to explore the electro-redox reaction of phosphomolybdate complexes on the surface of electrode, which produced a quantitative electrochemical response of phosphate anions. The modification of the electrode surface with ZrO2/ZnO/MWCNTs nanocomposites is able to generate the electroactive species via chemical reaction between molybdenum (Mo(VI)) and the targeted phosphate anions, leading to a sensitive detection technique for trace phosphate with a lower detection limit (LOD = 2.0 × 10-8 mol L-1), higher reproducibility, anti-interference, and precision in different soil sources. This system will be of great potential to advance the trace-level understanding of phosphate especially in field environmental analysis.


Asunto(s)
Nanotubos de Carbono , Técnicas Electroquímicas , Electrodos , Fosfatos/análisis , Reproducibilidad de los Resultados , Suelo
8.
Environ Sci Technol ; 55(9): 5815-5825, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33856195

RESUMEN

Nano and colloidal particles (1-1000 nm) play important roles in phosphorus (P) migration and loss from agricultural soils; however, little is known about their relative distribution in arable crop soils under varying agricultural geolandscapes at the regional scale. Surface soils (0-20 cm depth) were collected from 15 agricultural fields, including two sites with different carbon input strategies, in Zhejiang Province, China, and water-dispersible nanocolloids (0.6-25 nm), fine colloids (25-160 nm), and medium colloids (160-500 nm) were separated and analyzed using the asymmetrical flow field flow fractionation technique. Three levels of fine-colloidal P content (3583-6142, 859-2612, and 514-653 µg kg-1) were identified at the regional scale. The nanocolloidal fraction correlated with organic carbon (Corg) and calcium (Ca), and the fine colloidal fraction with Corg, silicon (Si), aluminum (Al), and iron (Fe). Significant linear relationships existed between colloidal P and Corg, Si, Al, Fe, and Ca and for nanocolloidal P with Ca. The organic carbon controlled colloidal P saturation, which in turn affected the P carrier ability of colloids. Field-scale organic carbon inputs did not change the overall morphological trends in size fractions of water-dispersible colloids. However, they significantly affected the peak concentration in each of the nano-, fine-, and medium-colloidal P fractions. Application of chemical fertilizer with carbon-based solid manure and/or modified biochar reduced the soil nano-, fine-, and medium-colloidal P content by 30-40%; however,the application of chemical fertilizer with biogas slurry boosted colloidal P formation. This study provides a deep and novel understanding of the forms and composition of colloidal P in agricultural soils and highlights their spatial regulation by soil characteristics and carbon inputs.


Asunto(s)
Fósforo , Suelo , Carbono , China , Coloides , Estiércol , Fósforo/análisis
9.
Nature ; 517(7534): 365-8, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25337882

RESUMEN

One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Productos Agrícolas/crecimiento & desarrollo , Clima , Cambio Climático , Eficiencia , Abastecimiento de Alimentos , Lluvia , Suelo
10.
Med Sci Monit ; 27: e927464, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33500378

RESUMEN

BACKGROUND Natural killer (NK) cells are important for the prognosis of multiple cancers, but their prognostic value remains to be evaluated in patients with gastric cancer. Thus, this retrospective study was conducted at a single center to investigate the association between percentage of NK cells in the peripheral blood and prognosis in patients with gastric cancer. MATERIAL AND METHODS The data of 180 gastric cancer patients were collected. Univariate and multivariate Cox regression models were applied to screen candidate prognostic factors. A time-dependent receiver operating characteristic curve was employed to evaluate the ability of NK cells as a prognostic marker. Furthermore, we determined the correlation between the NK cells percentage and other parameters and their clinical significance. RESULTS Patients with a higher percentage of NK cells survived longer than those with a lower percentage of NK cells. Cox analysis revealed that NK cells could be used as an independent indicator for patients with gastric cancer. The percentage of NK cells was positively correlated with lymphocyte count and albumin, but was negatively correlated with CA125 and neutrophil-lymphocyte ratio. The area under the curve for NK cells in predicting the 5-year survival rate for gastric cancer was 0.792. This increased to 0.830 upon combining NK cells with neutrophil-lymphocyte ratio. Patients at early T, N, and clinical stages possessed a significantly higher percentage of NK cells compared to those at advanced T, N, and clinical stages of gastric cancer. CONCLUSIONS Our results suggest that a higher percentage of NK cells predicts is associated with longer survival of gastric cancer patients and could serve as an independent prognostic biomarker.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias Gástricas/sangre , Adulto , Anciano , Biomarcadores de Tumor/sangre , Antígeno Ca-125/sangre , Antígeno Ca-125/inmunología , Femenino , Humanos , Estimación de Kaplan-Meier , Células Asesinas Naturales/patología , Recuento de Linfocitos , Linfocitos/inmunología , Masculino , Proteínas de la Membrana/sangre , Proteínas de la Membrana/inmunología , Persona de Mediana Edad , Neutrófilos/inmunología , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Estudios Retrospectivos , Albúmina Sérica/inmunología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Tasa de Supervivencia
11.
Pak J Med Sci ; 37(6): 1585-1589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712287

RESUMEN

OBJECTIVE: This paper summarizes the MRI imaging findings of primary central nervous system lymphoma (PCNSL) in the posterior cranial fossa to improve the accuracy of PCNSL diagnosis in the posterior cranial fossa. METHODS: This study retrospectively analyzed the MRI imaging manifestations of 15 PCNSL posterior cranial fossa cases confirmed by puncture or surgical pathology from June 2017 to May 2018, including their occurrence sites, the number of lesions, MRI plain and enhanced manifestations, and diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy. Imaging (MRS) performance. RESULTS: A total of 15 cases were enrolled, including 10 cases of single lesion and five cases of multiple lesions. The total number of lesions was 25, which were in the cerebellar hemisphere and cerebellar vermis, midbrain, fourth ventricle, and pontine cerebellum. The lesions were round, irregular, nodular, patchy, with low or medium signals on T1WI, equal or slightly higher signals on T2WI, and enhanced with 25 meningiomas-like gray matter signals. All of them were significantly strengthened. "Acupoint sign" and "umbilical depression sign" were seen in eight lesions. There were 17 massive and nodular enhancements, four striped enhancements, three patchy enhancements, and one circular enhancement. five cases of DWI showed homogeneous high signal, two cases showed uneven high signal, and 3 cases showed medium signal. The ADC value of tumor parenchyma in 10 patients was (0.62±0.095)×10-3mm2/s. MRS examination showed obvious Lip peak in two cases. CONCLUSION: PCNSL in posterior cranial fossa has certain characteristics. DWI, ADC value and MRS are helpful to improve the correct diagnosis rate of PCNSL.

12.
Environ Res ; 191: 110034, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32827522

RESUMEN

Blending waste biomass for co-pyrolysis is generally regarded as a promising method for reduced-volume, value-added, and hazard-free treatment of sewage sludge. Hence, a comparison was made of the co-pyrolysis of sewage sludge with rice husk and with bamboo sawdust (1:1, w/w) at 400 and 700 °C and the properties and behaviors of selected metals in the corresponding biochars. Biochar produced by co-pyrolysis with both biomass wastes had larger (5 × 5 rectangle) aromatic clusters than did the sewage sludge biochar (4 × 4 rectangle) using the rectangle-like model on the basis of biochar molar H/C ratio, indicating increased aromaticity of the co-pyrolyzed biochars. Moreover, the molar O/C ratio of the sewage sludge-bamboo biochar was much lower than that of the sewage sludge-husk biochar, especially after pyrolysis at 700 °C (0.02 vs 0.27), suggesting greater recalcitrance to ageing. Co-pyrolysis of sewage sludge with husk invariably resulted in a higher percentage of metals studied in the residual fraction than co-pyrolysis with sawdust at the same temperature, leading to a lower risk index (14.2) because of the maximum metal encapsulation in the sewage sludge-husk biochar at 700 °C. Overall, co-pyrolysis of sewage sludge with husk provided higher metal immobilization but apparently lower biochar stability than co-pyrolysis with sawdust. These results provide an alternatively practical strategy for the safe disposal of sewage sludge and biomass wastes.


Asunto(s)
Oryza , Sasa , Carbón Orgánico , Pirólisis , Aguas del Alcantarillado
13.
Sensors (Basel) ; 20(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722519

RESUMEN

Glyphosate, which has been widely reported to be a toxic pollutant, is often present at trace amounts in the environment. In this study, a novel copper-aluminum metal hydroxide doped graphene nanoprobe (labeled as CuAl-LDH/Gr NC) was first developed to construct a non-enzymatic electrochemical sensor for detection trace glyphosate. The characterization results showed that the synthesized CuAl-LDH had a high-crystallinity flowered structure, abundant metallic bands and an intercalated functional group. After mixed with Gr, the nanocomposites provided a larger surface area and better conductivity. The as-prepared CuAl-LDH/Gr NC dramatically improved the enrichment capability for glyphosate to realize the stripping voltammetry detection. The logarithmic linear detection range of the sensor was found to be 2.96 × 10-9-1.18 × 10-6 mol L-1 with the detection limit of 1 × 10-9 mol L-1 with excellent repeatability, good stability and anti-interference ability. Further, the sensor achieved satisfactory recovery rates in spiked surface water, ranging from 97.64% to 108.08%, demonstrating great accuracy and practicality.

14.
J Environ Qual ; 48(1): 102-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640343

RESUMEN

The analytical techniques and instrumentation used to assess agricultural and rural nonpoint-source organic pollution loading are usually complex and expensive. There has been a strong demand for alternative methodologies to determine the presence and composition of organic pollutants and to predict their levels. In the current work, we investigated a simple and inexpensive approach combining excitation-emission matrix and support vector machine that measures pollution and predicts the levels of precursors to disinfection by-products, which are organic pollutants derived from agricultural and rural nonpoint sources in small watersheds. Through parallel factor analysis, a four-component model was developed to explain the composition of dissolved organic matter in water impacted by nonpoint-source pollution. Support vector classification and support vector regression with model components can use fluorescence properties as proxy indicators for nonpoint-source pollution. When the model components are used as input variables, formation potential of disinfection by-products can be predicted. This method provides water utilities managers with tools to control pollution, supervise aquatic environments, and ensure the safety of drinking water.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Agricultura , Desinfección , Contaminación Ambiental
15.
J Environ Manage ; 238: 331-340, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30856593

RESUMEN

The reuse of water in agriculture has become more common in water management worldwide. However, there is very limited information about nutrient retention in water reclamation management. In this study, an improved low impact development (LID) practice was constructed to investigate the synergistic effects of three substrates amendment on nitrogen (N) and phosphorus (P) retention under two irrigation modules: spray and drip irrigation. The orthogonal combination of the three substrates was controlled during four leaching events, with polyacrylamide (PAM), peat soil, and straw biochar application rates of 1, 2, and 4 g kg-1; 5, 10, and 20 g kg-1; and 10, 20, and 40 g kg-1, respectively. Results showed that the optimum treatments for N and P were 2 g kg-1 of PAM; 2 g kg-1 of PAM, 10 g kg-1 of peat soil, and 40 g kg-1 of straw biochar, respectively. The highest amounts of N and P retention under spray and drip irrigation were 83.12 mg N kg-1 and 50.09 mg N·kg-1, and 11.88 mg P·kg-1 and 7.47 mg P·kg-1, respectively. The analysis of variance indicated that PAM, biochar, and peat soil affected the retention of leachate, N, and P differently. PAM application could not only improve the water, N, P retention capacity of soil, but also significantly increase the content of >2 mm water-stable soil aggregate (WSA) (p<0.05), and there is an advisable linear relation between N, P retention and the content of >2 mm WSA (R2 = 0.79, 0.67, respectively). Overall, this study concludes that a combined application of PAM and biochar could reduce P loss and increase the >2 mm WSA under leaching condition.


Asunto(s)
Carbón Orgánico , Nutrientes , Agricultura , Nitrógeno , Fósforo , Suelo
16.
J Environ Qual ; 47(4): 922-929, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025057

RESUMEN

Nonpoint sources are difficult to control because their nutrient contribution from different parts of a watershed can vary substantially. Identifying critical source areas of nutrient loss is an important step in watershed pollution mitigation programs. This study sought to use an integrated index model to differentiate between subbasins that serve as critical source areas of N and P nonpoint sources of pollution in China's Tiaoxi watershed. In contrast with previous N and P indices, multiple sources of pollution (i.e., agronomic activity, domestic wastewater, livestock farming, and aquaculture) were considered. Nitrogen and P source factors (i.e., N and P annual export loads) and transport factors were multiplied to determine the overall risk of nutrient loss in the integrated index model. Critical source areas were identified by a higher nutrient loss index. Of the 92 subbasins within the Tiaoxi watershed, 13 were determined to be critical sources for N, 10 for P, and seven for both N and P. Critical source area identification corresponds well with water quality data from the subbasins. The results show the potential use of the integrated index model for prioritizing and targeting watershed pollution mitigation activities at the subbasin level.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , China , Nitrógeno , Calidad del Agua
17.
J Environ Qual ; 45(6): 1865-1873, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27898772

RESUMEN

Nutrient runoff losses from cropping fields can lead to nonpoint source pollution; however, the level of nutrient export is difficult to evaluate, particularly at the regional scale. This study aimed to establish a novel yet simple approach for estimating total nitrogen (TN) and total phosphorus (TP) runoff losses from regional paddy fields. In this approach, temporal changes of nutrient concentrations in floodwater were coupled with runoff-processing functions in rice ( L.) fields to calculate nutrient runoff losses for three site-specific field experiments. Validation experiments verified the accuracy of this method. The geographic information system technique was used to upscale and visualize the TN and TP runoff losses from field to regional scales. The results indicated that nutrient runoff losses had significant spatio-temporal variation characteristics during rice seasons, which were positively related to fertilizer rate and precipitation. The average runoff losses over five study seasons were 20.21 kg N ha for TN and 0.76 kg P ha for TP. Scenario analysis showed that TN and TP losses dropped by 7.64 and 3.0%, respectively, for each 10% reduction of fertilizer input. For alternate wetting and drying water management, the corresponding reduction ratio was 24.7 and 14.0% respectively. Our results suggest that, although both water and fertilizer management can mitigate nutrient runoff losses, the former is significantly more effective.


Asunto(s)
Sistemas de Información Geográfica , Nitrógeno/análisis , Oryza , Fósforo/análisis , Agricultura , Fertilizantes , Movimientos del Agua
18.
Sci Total Environ ; 928: 172458, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641117

RESUMEN

Reducing phosphorus (P) loss from agricultural drainage water is challenging. In this study, we aimed to remove P from agricultural drainage water by developing an integrated sediment interceptor with adsorbent modules filled with Zr/Zn nanocomposite-modified ceramsite (ZMC-interceptor). The results of sequential chemical extraction and 31P NMR showed that the contents of H2O-P (1.15 % of total P), NaHCO3-Pi (10.48 % of total P), and ortho-P (orthophosphate, 90.6 % of total P) in the sediments of the ZMC-interceptors were higher than those in nearby field soils. The average enrichment ratios of particulate P (PP, >450 nm), medium-colloidal P (MCP, 220-450 nm), fine-colloidal P (FCP, 1-220 nm), and truly dissolved P (Truly DP, <1 nm) in the sediment over the field soil were 1.37, 1.21, 1.70, and 3.01, respectively. No significant differences were found in the sediment P-trapping function with and without ZMC integrated sediment interceptors. However, the ZMC-interceptors remarkably reduced total P (39.7 % for influent concentrations of 0.19-0.68 mg L-1) from agricultural drainage water compared to those unmodified ceramsite-interceptors (21.7 % for influent concentrations of 0.17-0.66 mg L-1) during the drainage 'window period' (June-August 2022). This was mainly due to the higher removal efficacies of MCP (19.7 %), FCP (23.3 %), and Truly DP (34.8 %) of the ZMC-interceptors. This study highlighted that the ZMC-interceptor not only trapped P in the sediment but also facilitated the removal of different-sized P fractionated from agricultural drainage water.

19.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832334

RESUMEN

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Asunto(s)
Glutatión , Manganeso , Platino (Metal) , Especies Reactivas de Oxígeno , Animales , Platino (Metal)/química , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química , Humanos , Manganeso/química , Manganeso/farmacología , Terapia Fototérmica/métodos , Ratones , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química
20.
ACS Nano ; 18(2): 1516-1530, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38172073

RESUMEN

Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.


Asunto(s)
Peróxido de Hidrógeno , Oxígeno , Dominio Catalítico , Silicatos , Dióxido de Silicio , Catálisis , Ácido Gálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA