Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Am Chem Soc ; 145(8): 4892-4899, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795554

RESUMEN

Metal-free perovskites with light weight and eco-friendly processability have received great interest in recent years due to their superior physical features in ferroelectrics, X-ray detection, and optoelectronics. The famous metal-free perovskite ferroelectric MDABCO-NH4-I3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) has been demonstrated to exhibit excellent ferroelectricity comparable to that of inorganic ceramic ferroelectric BaTiO3, such as large spontaneous polarization and high Curie temperature (Ye et al. Science 2018, 361, 151). However, piezoelectricity as a vitally important index is far from enough in the metal-free perovskite family. Here, we report the discovery of large piezoelectric response in a new metal-free three-dimensional perovskite ferroelectric NDABCO-NH4-Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) by replacing the methyl group of MDABCO with the amino group. Besides the evident ferroelectricity, strikingly, NDABCO-NH4-Br3 shows a large d33 of 63 pC/N more than 4 times that of MDABCO-NH4-I3 (14 pC/N). The d33 value is also strongly supported by the computational study. To the best of our knowledge, such a large d33 value ranks the highest among the documented organic ferroelectric crystals to date and represents a major breakthrough in metal-free perovskite ferroelectrics. Combined with decent mechanical properties, NDABCO-NH4-Br3 is expected to be a competitive candidate for medical, biomechanical, wearable, and body-compatible ferroelectric devices.

2.
J Am Chem Soc ; 145(42): 23292-23299, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819908

RESUMEN

Fullerenes offer versatile functionalities and are promising materials for a widespread range of applications from biomedicine and energy to electronics. Great efforts have been made to manipulate the symmetries of fullerene and its derivatives for studying material properties and novel effects, such as ferroelectricity with polar symmetry; however, no documentary report has been obtained to realize their ferroelectricity. Here, for the first time, we demonstrated clear ferroelectricity in a fullerene adduct formed by C60 and S8. More is different: the combination of the most symmetric molecule C60 with the highest Ih symmetry and molecule S8 with high D4d symmetry resulted in the polar C60S8 adduct with a low crystallographic symmetry of the C2v (mm2) point group at room temperature. The presented C60S8 undergoes polar-to-polar ferroelectric phase transition with the mm2Fm notation, whose ferroelectricity was confirmed by a ferroelectric hysteresis loop and ferroelectric domain switching. This finding opens up a new functionality for fullerenes and sheds light on the exploration of more ferroelectric fullerenes.

3.
J Am Chem Soc ; 145(3): 1936-1944, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637030

RESUMEN

Piezoelectric materials that enable electromechanical conversion have great application value in actuators, transducers, sensors, and energy harvesters. Large piezoelectric (d33) and piezoelectric voltage (g33) coefficients are highly desired and critical to their practical applications. However, obtaining a material with simultaneously large d33 and g33 has long been a huge challenge. Here, we reported a hybrid perovskite ferroelectric [Me3NCH2Cl]CdBrCl2 to mitigate and roughly address this issue by heavy halogen substitution. The introduction of a large-size halide element softens the metal-halide bonds and reduces the polarization switching barrier, resulting in excellent piezoelectric response with a large d33 (∼440 pC/N), which realizes a significant optimization compared with that of previously reported [Me3NCH2Cl]CdCl3 (You et al. Science2017, 357, 306-309). More strikingly, [Me3NCH2Cl]CdBrCl2 simultaneously shows a giant g33 of 6215 × 10-3 V m/N, far exceeding those of polymers and conventional piezoelectric ceramics. Combined with simple solution preparation, easy processing of thin films, and a high Curie temperature of 373 K, these attributes make [Me3NCH2Cl]CdBrCl2 promising for high-performance piezoelectric sensors in flexible, wearable, and biomechanical devices.

4.
Angew Chem Int Ed Engl ; 62(31): e202306732, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272456

RESUMEN

Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.

5.
Angew Chem Int Ed Engl ; 62(51): e202315189, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37919233

RESUMEN

Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization. Significantly, 1 shows a photoinduced reversible change in its molecular orbitals from the 3 π molecular orbitals in the open-ring isomer to 2 π and 1 σ molecular orbitals in the closed-ring isomer, which enables reversible ferroelectric domain switching by optical manipulation. To our knowledge, this is the first report revealing the manipulation of ferroelectric polarization in homochiral ferroelectric crystal by photoinduced breaking of molecular orbitals. This finding sheds light on the exploration of molecular orbital breaking in ferroelectrics for optical manipulation of ferroelectricity.

6.
J Am Chem Soc ; 144(48): 22325-22331, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36426869

RESUMEN

Molecular ferroelectrics with large piezoelectric responses have long been sought for their advantages of light weight, mechanical flexibility, and easy preparation, in contrast to the widely used inorganic counterparts. Representatively, a molecular ferroelectric crystal [Me3NCH2Cl]CdCl3 (TMCM-CdCl3) has been found to show a large piezoelectric coefficient d33 of 220 pC/N exceeding that of BaTiO3 (You et al. Science2017, 357, 306-309). However, although the d33 of molecular ferroelectrics has achieved great progress, their electromechanical coupling factor k33, which is essential for various piezoelectric applications, including ultrasonic transducers and actuators, was rarely explored and is far below the level of inorganic ferroelectrics. The major reason for this situation is the great challenge of growing large-size crystals which is a key limiting factor for measuring k33. Here, we grew inch-size crystals of organic-inorganic perovskite ferroelectric TMCM-CdCl3 with a high d33 (383 pC/N) for investigating its piezoelectric responses including the k33 (0.483) by the resonance method. Such high k33 (0.483) is much larger than those of other molecular ferroelectrics and competitive with that of BaTiO3 (0.5). In addition, TMCM-CdCl3 has a low elastic modulus of 13.03 GPa, an order of magnitude lower than that of BaTiO3. This finding sheds light on the exploration of large electromechanical coupling factors in molecular ferroelectrics for potential applications in flexible and portable piezoelectric devices.

7.
Proc Natl Acad Sci U S A ; 116(13): 5878-5885, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850531

RESUMEN

For nearly 100 y, homochiral ferroelectrics were basically multicomponent simple organic amine salts and metal coordination compounds. Single-component homochiral organic ferroelectric crystals with high-Curie temperature (Tc) phase transition were very rarely reported, although the first ferroelectric Rochelle salt discovered in 1920 is a homochiral metal coordination compound. Here, we report a pair of single-component organic enantiomorphic ferroelectrics, (R)-3-quinuclidinol and (S)-3-quinuclidinol, as well as the racemic mixture (Rac)-3-quinuclidinol. The homochiral (R)- and (S)-3-quinuclidinol crystallize in the enantiomorphic-polar point group 6 (C6) at room temperature, showing mirror-image relationships in vibrational circular dichroism spectra and crystal structure. Both enantiomers exhibit 622F6-type ferroelectric phase transition with as high as 400 K [above that of BaTiO3 (Tc = 381 K)], showing very similar ferroelectricity and related properties, including sharp step-like dielectric anomaly from 5 to 17, high saturation polarization (7 µC/cm2), low coercive field (15 kV/cm), and identical ferroelectric domains. Their racemic mixture (Rac)-3-quinuclidinol, however, adopts a centrosymmetric point group 2/m (C2h), undergoing a nonferroelectric high-temperature phase transition. This finding reveals the enormous benefits of homochirality in designing high-Tc ferroelectrics, and sheds light on exploring homochiral ferroelectrics with great application.

8.
Chem Soc Rev ; 50(14): 8248-8278, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081064

RESUMEN

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.

9.
Angew Chem Int Ed Engl ; 61(33): e202206034, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35604204

RESUMEN

Organic-inorganic hybrid perovskites (OIHPs) have gained tremendous interest for their rich functional properties. However, the coexistence of more than one of ferroelectricity, ferromagnetism and ferroelasticity has been rarely found in OIHPs. Herein, we report a two-dimensional Cr2+ -based OIHP, [3,3-difluorocyclobutylammonium]2 CrCl4 ([DFCBA]2 CrCl4 ), which shows both ferroelectricity and ferromagnetism. It undergoes a 4/mmmFm type ferroelectric phase transition at a temperature as high as 387 K and shows multiaxial ferroelectricity with a saturate polarization of 2.1 µC cm-2 . It acts as a soft ferromagnet with a Curie temperature of 32.6 K. This work throws light on the exploration of OIHPs with the coexistence of ferroelectricity and ferromagnetism for applications in future multifunctional smart devices.

10.
J Am Chem Soc ; 143(51): 21685-21693, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34928580

RESUMEN

A ferroelectric/ferroelastic is a material whose spontaneous polarization/strain can be switched by applying an external electric field/mechanical stress. However, the optical control of spontaneous polarization/strain remains relatively unexplored in crystalline materials, although photoirradiation stands out as a nondestructive, noncontact, and remote-controlled stimulus beyond stress or electric field. Here, we present two new organic single-component homochiral photochromic multiferroics, (R)- and (S)-N-3,5-di-tert-butylsalicylidene-1-4-bromophenylethylamine (SA-Ph-Br(R) and SA-Ph-Br(S)), which show a full ferroelectric/ferroelastic phase transition of 222F2 type at 336 K. Under photoirradiation, their spontaneous polarization/strain can be switched quickly within seconds and reversibly between two ferroelectric/ferroelastic phases with the respective enol and trans-keto forms triggered by structural photoisomerizations. In addition, they possess a superior acoustic impedance characteristic with a value of ∼2.42 × 106 kg·s-1·m-2, lower than that of polyvinylidene fluoride (PVDF, (3.69-4.25) × 106 kg·s-1·m-2), which can better match human tissues. This work realizes for the first time that multiple ferroic orders in single-component organic crystals with ultralow acoustic impedance can be simultaneously controlled and coupled by three physical channels (electric, stress, light fields), suggesting their great potential in multichannel data storage, optoelectronics, and related applications compatible with all-organic electronics and human tissues.

11.
J Am Chem Soc ; 142(13): 6236-6243, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159954

RESUMEN

Organic-inorganic ABX3 (A, B = cations, X = anion) hybrids with perovskite structure have recently attracted tremendous interest due to their structural tunability and rich functional properties, such as ferroelectricity. However, ABX3 hybrid ferroelectrics with other structures have rarely been reported. Here, we successfully designed an ABX3 hybrid ferroelectric [(CH3)3NCH2F]ZnCl3 with a spontaneous polarization of 4.8 µC/cm2 by the molecular modification of [(CH3)4N]ZnCl3 through hydrogen/halogen substitution. It is the first zinc halide ABX3 ferroelectric, which contains one-dimensional [ZnCl3]-n chains of corner-sharing ZnCl4 tetrahedra, distinct from the anionic framework of corner-sharing or face-sharing BX6 octahedra in the ABX3 perovskites. From zero dimension to one dimension, the high symmetry of ZnCl4 tetrahedra is broken, and all of them align along one direction to form a polar [ZnCl3]-n chain, beneficial to the generation of ferroelectricity. This finding provides an efficient polar anionic framework for enriching the family of hybrid ferroelectrics by assembling with various cations and should inspire further exploration of new classes of organic-inorganic ABX3 ferroelectrics.

12.
J Am Chem Soc ; 142(52): 21932-21937, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33326208

RESUMEN

Organic ferroelectrics are attracting tremendous interest because of their mechanical flexibility, ease of fabrication, and low acoustical impedance. Although great advances have been made in recent years, topological defects such as vortices remain relatively unexplored in the organic ferroelectric system. Here, from [quinuclidinium]ReO4 ([Q]ReO4), we applied the molecular design strategy of H/F substitution to successfully synthesize the organic ferroelectric [4-fluoroquinuclidinium]ReO4 ([4-F-Q]ReO4). Through H/F substitution, the Curie temperature and spontaneous polarization are respectively increased from 367 K and 5.83 µC/cm2 in [Q]ReO4 to 466 K and 11.37 µC/cm2 in [4-F-Q]ReO4. Moreover, under mechanical stress fields, three kinds of stripelike domains with various polarization directions emerge to form a windmill-like domain pattern in the thin film of [4-F-Q]ReO4, in which intriguing vortex-antivortex topological configurations can exist stably. This work provides an efficient strategy for optimizing the properties of organic ferroelectrics and exploring emergent phenomena.

13.
J Am Chem Soc ; 142(10): 4604-4608, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32088957

RESUMEN

Three-dimensional (3D) organic-inorganic lead halides represented by [CH3NH3]PbI3 perovskite have attracted great interest for their diverse functional properties and promising optoelectronic applications. However, 3D lead halides are still very rare and their ferroelectricity remains controversial. Here, we report an unprecedented 3D lead halide perovskite-related ferroelectric [2-trimethylammonioethylammonium]Pb2Cl6 ([TMAEA]Pb2Cl6), which contains a 3D lead chloride framework of corner- and edge-sharing PbCl6 octahedral, with the [TMAEA]+ cations occupying the voids of the framework. [TMAEA]Pb2Cl6 shows a ferroelectric-to-paraelectric phase transition with the Curie temperature as high as 412 K, a typical ferroelectric hysteresis loop at 293 K with a spontaneous polarization of 1 µC/cm2, and a clear ferroelectric domain switching. To the best of our knowledge, [TMAEA]Pb2Cl6 is the first 3D lead halide showing such an excellent ferroelectricity. Additionally, it also exhibits a semiconducting property with a direct band gap of 3.43 eV. This finding enriches the family of 3D hybrid lead halides and inspires the exploration of 3D lead halide ferroelectrics.

14.
J Am Chem Soc ; 142(15): 6946-6950, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227926

RESUMEN

Chiral organic-inorganic perovskites (COIPs) have recently attracted increasing interest due to their unique inherent chirality and potential applications in next-generation optoelectronic and spintronic devices. However, COIP ferroelectrics are very sparse. In this work, for the first time, we present the nickel-nitrite ABX3 COIP ferroelectrics, [(R and S)-N-fluoromethyl-3-quinuclidinol]Ni(NO2)3 ([(R and S)-FMQ]Ni(NO2)3), where the X-site is the rarely seen NO2- bridging ligand. [(R and S)-FMQ]Ni(NO2)3 display mirror-relationship in the crystal structure and vibrational circular dichroism signal. It is emphasized that [(R and S)-FMQ]Ni(NO2)3 show splendid ferroelectricity with both an extremely high phase-transition point of 405 K and a spontaneous polarization of 12 µC/cm2. To our knowledge, [(R and S)-FMQ]Ni(NO2)3 are the first examples of nickel-nitrite based COIP ferroelectrics. This finding expands the COIP family and throws light on exploration of high-performance COIP ferroelectrics.

15.
Inorg Chem ; 59(1): 829-836, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31809026

RESUMEN

Molecular ferroelectrics as alternatives to the conventional inorganic ferroelectrics have been greatly developed in past decades; many of these have been discovered and designed through various chemical means due to their structural adjustability. However, it is still a huge challenge to obtain high (above room temperature) Curie temperature (Tc) molecular ferroelectrics to meet the application requirements. Here, we present a new organic-inorganic hybrid molecular ferroelectric, [cyclopentylammonium]2CdBr4 (1), showing a moderate above-room-temperature Tc of 340.3 K. The mechanism of the ferroelectric phase transition from Pnam to Pna21 in 1 is ascribed to the order-disorder transition of both the organic cations and inorganic anions, affording a spontaneous polarization of 0.57 µC/cm2 for the ferroelectric phase. Using piezoresponse force microscopy (PFM), we clearly observed the antiparallel 180° stripe domains and realized the polarization switching, unambiguously establishing the existence of room-temperature ferroelectricity in the thin film. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.

16.
Angew Chem Int Ed Engl ; 59(24): 9574-9578, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32304166

RESUMEN

Switchable materials play an invaluable role in signal processing and encryption of smart devices. The development of multifunctional materials that exhibit switching characteristics in multiple physical channels has attracted widespread attention. Now, two chiral thermochromic ferroelastic crystals (S-CTA)2 CuCl4 and (R-CTA)2 CuCl4 (CTA=3-chloro-2-hydroxypropyltrimethylammonium) have been prepared with switchable properties in dielectricity, conductivity, second harmonic generation (SHG), piezoelectricity, ferroelasticity, chiral, and thermochromic properties. Compared with traditional phase-transition materials with switching features, thermochromism brings additional spectral encryption possibilities for future information processing. To the best of our knowledge, this is the first chiral thermochromic ferroelastic that exhibits switching properties in seven physical channels. This work is expected to promote further exploration of multifunctional molecular switchable materials.

17.
Angew Chem Int Ed Engl ; 59(45): 19974-19982, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32721064

RESUMEN

The nonradiative recombination of electrons and holes has been identified as the main cause of energy loss in hybrid organic-inorganic perovskite solar cells (PSCs). Sufficient built-in field and defect passivation can facilitate effective separation of electron-hole pairs to address the crucial issues. For the first time, we introduce a homochiral molecular ferroelectric into a PSC to enlarge the built-in electric field of the perovskite film, thereby facilitating effective charge separation and transportation. As a consequence of similarities in ionic structure, the molecular ferroelectric component of the PSC passivates the defects in the active perovskite layers, thereby inducing an approximately eightfold enhancement in photoluminescence intensity and reducing electron trap-state density. The photovoltaic molecular ferroelectric PSCs achieve a power conversion efficiency as high as 21.78 %.

18.
Angew Chem Int Ed Engl ; 59(9): 3495-3499, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-31828922

RESUMEN

Molecular ferroelectrics have attracted considerable interests because of their easy and environmentally friendly processing, low acoustical impedance and mechanical flexibility. Herein, a molecular thermochromic ferroelectric, N,N'-dimethyl-1,4-diazoniabicyclo[2.2.2]octonium tetrachlorocuprate(II) ([DMe-DABCO]CuCl4 ) is reported, which shows both excellent ferroelectricity and intriguing thermochromism. [DMe-DABCO]CuCl4 undergoes a ferroelectric phase transition from Pca21 to Pbcm at a significantly high Curie temperature of 413 K, accompanied by a color change from yellow to red that is due to the remarkable deformation of [CuCl4 ]2- tetrahedron, where the ferroelectric and paraelectric phases correspond to yellow and red, respectively. Combined with multiple bistable physical properties, [DMe-DABCO]CuCl4 would be a promising candidate for next-generation smart devices, and should inspire further exploration of multifunctional molecular ferroelectrics.

19.
J Am Chem Soc ; 141(10): 4474-4479, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30801183

RESUMEN

The past decade has witnessed much progress in designing molecular ferroelectrics, whose intrinsic mechanical flexibility, structural tunability, and easy processability are desirable for next-generation flexible and wearable electronic devices. However, an obstacle in expanding their promising applications in nonvolatile memory elements, capacitors, and sensors is effectively modulating the Curie temperature ( Tc). Here, taking advantage of fluorine substitution on the reported molecular ferroelectric, (pyrrolidinium)MnCl3, we present enantiomeric perovskite ferroelectrics, namely, ( R) - and ( S) -3-(fluoropyrrolidinium)MnCl3. The close van der Waal's radii and the similar steric parameters between H and F atoms ensure the minimum disruption of the crystal structure, while their different electronegativity and polarizability can trigger significant changes in the physical and chemical properties. As expected, the Tc gets successfully increased from 295 K in (pyrrolidinium)MnCl3 to 333 K in these two homochiral compounds. Such a dramatic enhancement of 38 K signifies an important step toward designing high- Tc molecular ferroelectrics. In the light of the conceptually new idea of fluorine substitution, one could look forward to a continuous succession of new molecular ferroelectric materials and technology developments.

20.
J Am Chem Soc ; 141(45): 18334-18340, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31657909

RESUMEN

Two-dimensional (2D) organic-inorganic perovskites (OIPs), with improved material stability over their 3D counterparts, are highly desirable for device applications. It is their considerable structural diversity that offers an unprecedented opportunity to engineer materials with fine-tuning functionalities. The isosteric substitution of hydrogen by an electronegative fluorine atom has been proposed as a useful route to improve the photovoltaic performance of 2D OIPs, whereas its valuable role in developing ferroelectricity is still waiting for further exploration. Herein, for the first time we applied fluorinated aromatic cations in extending the family of 2D OIP ferroelectrics, and successfully obtained [2-fluorobenzylammonium]2PbCl4 as a high-performance ferroelectric semiconductor. The failures in the nonferroelectric [4-fluorobenzylammonium]2PbCl4 and [3-fluorobenzylammonium]2PbCl4 demonstrate that the selective introduction of fluorine in correct structural positions is particularly essential. This work represents an unprecedented proof-of-concept in the use of fluorinated aromatic cations for the targeted design of excellent 2D OIP ferroelectrics, and is believed to inspire the future development of low-cost, high-efficiency, and stable device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA