Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795062

RESUMEN

Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.

2.
J Sci Food Agric ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253887

RESUMEN

BACKGROUND: Construction of meat analogs based on pea protein isolate (PPI) alone by high moisture extrusion (HME) is diffocult as a result of the lack of anisotropic structures. In the present study, 0%-15% of whey protein (WP) was introduced to PPI to make hybrid blends, which were used to construct HME extrudates. RESULTS: WP enhanced the hardness, adhesive, cohesiveness and gumminess of the extrudates and facilitated the formation of a distinct anisotropic structure of PPI. The fibrous degrees of the extrudates containing 10% and 15% WP were around 1.50. The addition of WP, which has more -SH groups, increased the disulfide bonds and hydrogen bonding in the extrudates, leading to a denser cross-linked structure. Particle size distribution and Fourier transform infrared analysis showed that WP induced more compact structured aggregates and more ß-sheet structures in the extrudates. Furthermore, the higher hydration capacity of WP may also help form a dilute melt and generate a more pronounced plug flow, assisting the formation of fiber structures of PPI. CONCLUSION: The present study demonstrates that WP is a potential modifier, which could be used to improve the structure of PPI-based meat analogs. © 2024 Society of Chemical Industry.

3.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720585

RESUMEN

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Asunto(s)
Fermentación , Verduras , Bacterias , Alimentos Fermentados/microbiología , Microbiología de Alimentos/métodos , Microbiota , Verduras/microbiología , Levaduras
4.
Crit Rev Food Sci Nutr ; 63(28): 9409-9424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35486571

RESUMEN

Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.


Asunto(s)
Antocianinas , Plantas , Extractos Vegetales
5.
Crit Rev Food Sci Nutr ; : 1-27, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395263

RESUMEN

Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.

6.
Food Microbiol ; 109: 104136, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309439

RESUMEN

Under stressful conditions, bacteria can enter viable but non-culturable (VBNC) state to survive. VBNC cells lost ability to grow on routine culture medium but are still alive and may revive in suitable conditions. The revived cells can consume nutrients or produce toxins, leading to food spoilage or human illness, posing great risk to food safety and public health. Previously, we have reported that high pressure carbon dioxide (HPCD), an environment-friendly sterilization technology, can induce VBNC formation. However, the underlying mechanism is unclear. By performing a comprehensive transcriptomic analysis, we revealed that HPCD initiated high expression of asr, encoding an acid shock protein, could promote VBNC formation of E. coli O157:H7. Quantitative reverse transcription PCR analysis suggested that high expression of asr (i) inhibited acid resistance (AR) systems, resulting in endogenous proton accumulation; (ii) inhibited hchA expression, a protein stabilizing factor. The two effects resulted in endogenous protein aggregation, which was highly correlated to VBNC formation. Accordingly, HPCD-stressed cells exhibited decreased efficiency of electron transfer chain and ATP production, which was also contributory to cytoplasmic protein aggregation. Taken together, HPCD-initiated high expression of Asr coupled with decreased ATP production led to protein aggregation, finally promoted the cells to enter VBNC state.


Asunto(s)
Escherichia coli O157 , Humanos , Dióxido de Carbono/farmacología , Agregado de Proteínas , Medios de Cultivo/farmacología , Adenosina Trifosfato
7.
Food Control ; 145: 109401, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36186659

RESUMEN

During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.

8.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903607

RESUMEN

For the better standardization and widespread application of the determination method of carotenoids in both chili peppers and their products, this work reports for the first time the simultaneous determination of five main carotenoids, including capsanthin, zeaxanthin, lutein, ß-cryptoxanthin and ß-carotene in chili peppers and their products, with optimized extraction and the high-performance liquid chromatography (HPLC) method. All parameters in the methodological evaluation were found to be in good stability, recovery and accuracy compliance with the reference values; the R coefficients for the calibration curves were more than 0.998; and the LODs and LOQs varied from 0.020 to 0.063 and from 0.067 to 0.209 mg/L, respectively. The characterization of five carotenoids in chili peppers and their products passed all the required validation criteria. The method was applied in the determination of carotenoids in nine fresh chili peppers and seven chili pepper products.


Asunto(s)
Capsicum , beta Caroteno , beta Caroteno/análisis , Luteína/análisis , Zeaxantinas/análisis , Capsicum/química , Cromatografía Líquida de Alta Presión/métodos , beta-Criptoxantina/análisis , Carotenoides/química
9.
Compr Rev Food Sci Food Saf ; 22(4): 2728-2746, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125461

RESUMEN

Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.


Asunto(s)
Manipulación de Alimentos , Esporas Bacterianas , Esporas Bacterianas/metabolismo
10.
Plant Cell Environ ; 45(9): 2810-2826, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748023

RESUMEN

Iron (Fe) deficiency is a nutritional stress in plants that commonly occurs in alkaline and calcareous soils. Mitogen-activated protein kinases (MPKs), the terminal player of MAPK cascade, are involved in distinct physiological processes. Once plants suffer from Fe deficiency stress, the mechanism of MPK function remains unclear owing to limited study on the MPK networks including substrate proteins and downstream pathways. Here, the MAP kinase MPK4-1 was induced in roots of Fe efficient apple rootstock Malus xiaojinensis but not in Fe inefficient rootstock Malus baccata under Fe deficiency conditions. Overexpression of MxMPK4-1 in apple calli and apple roots enhanced the responses to Fe deficiency. We found that MxMPK4-1 interacted with NADPH oxidases (NOX)-respiratory burst oxidase homologs MxRBOHD1 and MxRBOHD2, which positively regulated responses to Fe deficiency. Moreover, MxMPK4-1 phosphorylated the C terminus of MxRBOHD2 at Ser797 and Ser906 and positively and negatively regulated NOX activity through these phospho-sites, respectively. When compared with apple calli that overexpressed MxRBOHD2, the coexpression of MxMPK4-1 and MxRBOHD2 prominently enhanced the Fe deficiency responses. We also demonstrated that hydrogen peroxide derived from MxMPK4-1-MxRBOHD2 regulated the MxMPK6-2-MxbHLH104 pathway, illuminating a systematic network that involves different MPK proteins in M. xiaojinensis under Fe deficiency stress.


Asunto(s)
Malus , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Malus/metabolismo , NADPH Oxidasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo
11.
Crit Rev Food Sci Nutr ; 62(24): 6761-6782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33783272

RESUMEN

Sea buckthorn (Hippophae rhamnoides L.), which has been categorized as a "medicine food homology" fruit by China's National Health Commission for both nutritional and medicinal purposes, has nearly 200 kinds of nutritive and bioactive compounds such as polyunsaturated fatty acids, carotenoids, sugar alcohols, superoxide dismutase and phytosterols. Significant bioactivity, including cardiovascular improvement, antidiabetic and anti-obesity activity, have highlighted the application of sea buckthorn. This review compiled a database of the phytochemical compounds in sea buckthorn, which contains the contents of 106 nutrients and 74 bioactive compounds. The health benefits of sea buckthorn and its extracts were summarized and the mechanism of anti-oxidation and anti-inflammation were introduced in detail. Seventeen common marketed products of sea buckthorn from 8 countries were collected. A future scope is really needed to explore the mechanism of sea buckthorn bioactive compounds along with the incorporation cost-effective functional food products.


Asunto(s)
Hippophae , Fitosteroles , Carotenoides/análisis , Frutas/química , Alimentos Funcionales , Hippophae/química , Fitosteroles/análisis
12.
Crit Rev Food Sci Nutr ; 62(22): 6081-6102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33683157

RESUMEN

Fruit juices are becoming more and more popular in the whole world. However, the increasing fruit juice fraud cases are undermining the healthy development of fruit juice industry. Fruit juice authenticity represents an important food quality and safety parameter. Many techniques have been applied in fruit juices authenticity assessment. The purpose of this review is to provide a research overview of the targeted and untargeted analyses of fruit authentication, and a method selection guide for fruit juice authenticity assessment. Targeted markers, such as stable isotopes, phenolics, carbohydrates, organic acids, volatile components, DNAs, amino acids and proteins, as well as carotenoids, will be discussed. And untargeted techniques, including liquid/gas chromatography-mass spectrometer, nuclear magnetic resonance, infrared spectroscopy, inductively-coupled plasma-mass spectrometry/optical emission spectrometer, fluorescence spectra, electronic sensors and others, will be reviewed. The emerging untargeted for novel targeted marker analysis will be also summarized.


Asunto(s)
Bebidas , Jugos de Frutas y Vegetales , Bebidas/análisis , Cromatografía Liquida , Frutas/química , Espectrometría de Masas/métodos
13.
Crit Rev Food Sci Nutr ; 62(4): 989-1002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33054345

RESUMEN

The synthesis of novel functional materials from abundant food waste resources has great application potentials and ecological benefits. Nanocellulose is a renewable and sustainable polymer that possesses a modifiable surface, excellent mechanical strength, and high aspect ratio, and it is nontoxic. These unique properties garner nanocellulose a promising prospect for multi-various applications including the food industry. This review presents the structural characteristics and advances in the extraction approaches of nanocellulose, with an emphasis in recent progress on the various applications of nanocellulose in the field of food industry. Finally, the environmental and human health issues related to the production of nanocellulose are evaluated. The scheme to extract and produce nanocellulose from food wastes provides a platform for the sustainable utilization of waste biomass. These nanocelluloses exhibit excellent performances in green food packaging materials, emulsion stabilizers, dietary fiber, nutrition delivery and food three-dimensional (3 D) printing hydrogels. To ensure the security and regulatory issues, validated standards to characterize the structure and evaluate its toxicity are still indispensable to achieve the commercialization of nanocellulose in the food industry.


Asunto(s)
Celulosa , Eliminación de Residuos , Alimentos , Embalaje de Alimentos , Humanos , Polímeros
14.
Crit Rev Food Sci Nutr ; 62(19): 5322-5348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33591238

RESUMEN

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Capsicum , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Capsaicina/farmacología , Capsaicina/uso terapéutico , Femenino , Humanos
15.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557795

RESUMEN

(1) Background: (-)-Epigallocatechin-3-gallate (EGCG) has been reported to improve mitochondrial function in cell models, while the underlying mechanism is not clear. Cyclophilin D (CypD) is a key protein that regulates mitochondrial permeability transition pore (mPTP) opening. (2) Methods: In this study, we found that EGCG directly binds to CypD and this interaction was investigated by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation. (3) Results: SPR showed an affinity of 2.7 × 10-5 M. The binding sites of EGCG on CypD were mapped to three regions by 2D NMR titration, which are Region 1 (E23-V29), Region 2 (T89-G104) and Region 3 (G124-I133). Molecular docking showed binding interface consistent with 2D NMR titration. MD simulations revealed that at least two conformations of EGCG-CypD complex exist, one with E23, D27, L90 and V93 as the most contributed residues and E23, L5 and I133 for the other. The major driven force for EGCG-CypD binding are Van der Waals and electrostatic interactions. (4) Conclusions: These results provide the structural basis for EGCG-CypD interaction, which might be a potential mechanism of how EGCG protects mitochondrial functions.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Peptidil-Prolil Isomerasa F/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo
16.
Molecules ; 27(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956895

RESUMEN

In this study, high pressure processing (HPP) and thermal treatment were comparatively evaluated by examining their impacts on the binding behavior and interaction between α-lactalbumin (α-La) and pelargonium-3-glucoside (P3G) under pH values of 6.0, 7.4, and 8.0. The methods of circular dichroism spectroscopy, fluorescence quenching, dynamic light scattering, and molecular simulation were used to characterize the effects of processing-induced changes in protein structure, size distribution, binding site conformation, and residue charges on their binding characteristics between them. The results indicated that the thermal treatments significantly increased the quenching constants of the complex at pH 7.4/8.0 and 60/80 °C, as well as the accessible fraction of protein at pH 8.0/80 °C. Both HPP and thermal treatments increased the random coil content and showed limited effects on the α-helix and ß-sheet contents of α-La and caused the aggregation of the complex to varying degrees. Molecular dynamic simulation and docking analyses revealed that the binding site of the complex did not change under different processing conditions, but the solvent-accessible surface area varied under different conditions.


Asunto(s)
Lactalbúmina , Pelargonium , Dicroismo Circular , Glucósidos , Concentración de Iones de Hidrógeno , Lactalbúmina/química , Espectrometría de Fluorescencia
17.
J Sci Food Agric ; 102(1): 312-321, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34096072

RESUMEN

BACKGROUND: Sugarcane straw is an available but largely ignored lignocellulosic biomass to obtain cellulose nanocrystals (CNCs) with highly crystalline, tunable surface chemistries and a wide-ranging adaptability. Herein, we utilized sugarcane straw to obtain pure cellulose via purification processes, followed by subsequent preparation of CNCs via sulfuric acid hydrolysis. The properties of the purified fibers and obtained CNCs were assessed by their composition, morphology, chemical structure, crystallinity and thermal stability. RESULTS: After the purification process, alkali-treated fibers (ATFs) contained 886.33 ± 1.25 g kg-1 cellulose, and its morphological analysis revealed a smooth and slender fibrous structure. The CNCs obtained by treatment with 64 wt% sulfuric acid at 45 °C for 60 min were isolated in a yield of 21.8%, with a diameter and length of 6 to 10 nm and 160 to 200 nm, respectively. Moreover, crystallinity index of these CNCs reached 62.66%, and thermal stability underwent a two-step degradation. Short-term ultrasonication after hydrolysis was employed to enhance isolation of the CNC particles and improve the anionic charge with higher value -38.00 mV. CONCLUSION: Overall, isolation and characterization results indicated the potential for CNCs preparation using sugarcane straw, in addition to offering a fundamental understanding of this material and indicating potential applications. © 2021 Society of Chemical Industry.


Asunto(s)
Celulosa/química , Celulosa/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Saccharum/química , Residuos/análisis , Hidrólisis , Nanopartículas/química , Tallos de la Planta/química , Ácidos Sulfúricos
18.
Compr Rev Food Sci Food Saf ; 21(6): 4640-4682, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124402

RESUMEN

Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.


Asunto(s)
Manipulación de Alimentos , Tecnología de Alimentos , Presión Hidrostática , Proteínas
19.
Compr Rev Food Sci Food Saf ; 20(2): 1800-1828, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33594773

RESUMEN

High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.


Asunto(s)
Manipulación de Alimentos , Calidad de los Alimentos , Viabilidad Microbiana , Temperatura
20.
Metabolomics ; 16(8): 84, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32734416

RESUMEN

Following publication of the original article, the authors would like to correct the authors and author affiliations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA