Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 479, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134988

RESUMEN

The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Exosomas , Ferroptosis , Flores , Mucosa Gástrica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mucosa Intestinal , Intestino Delgado , Peroxidación de Lípido , Nanopartículas , Animales , Ferroptosis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Administración Oral , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Flores/química , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Humanos , Ratones Endogámicos C57BL
2.
AMB Express ; 14(1): 63, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824272

RESUMEN

Adequate bowel cleansing is crucial for endoscopic diagnosis and treatment, and the recovery of gut microbiota after intestinal cleansing is also important. A hypertonic syrup predominantly comprising L-arabinose and D-xylose (20% xylo-oligosaccharides) can be extracted from the hemicellulose of corn husks and cobs. L-Arabinose and xylo-oligosaccharides have been reported to relieve constipation and improve the gut microbial environment. This study evaluated the bowel cleansing effect of the aforementioned syrup and its influence on the organism and intestinal microbiota after cleansing in comparison with polyethylene glycol-4000 (PEG-4000) in mice. Bowel cleansing was performed using syrup or PEG-4000 in C57BL/6J mice, and the effect of intestinal preparation and its influence on serum electrolytes and gut microbiota after bowel cleansing were evaluated. The volume of intestinal residual feces in the syrup group was significantly lower than that in the PEG-4000 group. Additionally, syrup disturbed serum electrolytes more mildly than PEG-4000. Alpha diversity in the gut microbiota was significantly higher in the syrup group than in the PEG-4000 group on the first day after bowel cleansing. However, no difference in beta diversity was observed between the two groups. Syrup increased the abundance of Bifidobacteria and Christensenella and decreased the abundance of Akkermansia in comparison with PEG-4000 on the first day after bowel cleansing. Thus, this syrup has potential clinical use as a bowel cleansing agent given the above effects, its benefits and safety, and better taste and acceptability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA