Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(29): 16166-16175, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432645

RESUMEN

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations. The degree of multimerization and the strength of the stacking interaction are quantitatively determined in G4 self-assembled multimers. We show that self-assembly induces a significant polydispersity of the G4 multimers with an exponential distribution of contour lengths, consistent with a step-growth polymerization. On increasing DNA concentration, the strength of the stacking interaction between G4 monomers increases, as well as the average number of units in the aggregates. We utilized the same approach to explore the conformational flexibility of a model single-stranded long telomeric sequence. Our findings indicate that its G4 units frequently adopt a beads-on-a-string configuration. We also observe that the interaction between G4 units can be significantly affected by complexation with benchmark ligands. The proposed methodology, which identifies the determinants that govern the formation and structural flexibility of G4 multimers, may be an affordable tool aiding in the selection and design of drugs that target G4s under physiological conditions.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , ADN/química , Telómero
2.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240437

RESUMEN

Guanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing. In recent years, the use of G4-ligand complexes as photopharmacological targets has shown significant promise for developing novel therapeutic strategies and nanodevices. Here, we studied the possibility of manipulating the secondary structure of a human telomeric G4 sequence through the interaction with two photosensitive ligands, DTE and TMPyP4, whose response to visible light is different. The effect of these two ligands on G4 thermal unfolding was also considered, revealing the occurrence of peculiar multi-step melting pathways and the different attitudes of the two molecules on the quadruplex stabilization.


Asunto(s)
G-Cuádruplex , Humanos , Ligandos , Luz , Telómero/genética
3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901712

RESUMEN

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Humanos , Ligandos , Agua , Telómero
4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047038

RESUMEN

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
5.
Phys Chem Chem Phys ; 24(47): 29232-29240, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36445842

RESUMEN

G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.


Asunto(s)
Telómero , Humanos
6.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563512

RESUMEN

G-quadruplexes (G4s) are noncanonical forms of DNA involved in many key genome functions. Here, we exploited UV Resonance Raman scattering to simultaneously explore the vibrational behavior of a human telomeric G4 (Tel22) and its aqueous solvent as the biomolecule underwent thermal melting. We found that the OH stretching band, related to the local hydrogen-bonded network of a water molecule, was in strict relation with the vibrational features of the G4 structure as a function of temperature. In particular, the modifications to the tetrahedral ordering of the water network were strongly coupled to the DNA rearrangements, showing changes in temperature that mirrored the multi-step melting process of Tel22. The comparison between circular dichroism and Raman results supported this view. The present findings provide novel insights into the impact of the molecular environment on G4 conformation. Improving current knowledge on the solvent structural properties will also contribute to a better understanding of the role played by water arrangement in the complexation of G4s with ligands.


Asunto(s)
G-Cuádruplex , Dicroismo Circular , Reordenamiento Génico , Humanos , Solventes , Telómero/genética , Vibración , Agua
7.
RSC Adv ; 14(31): 22393-22402, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39010927

RESUMEN

3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I ß-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes ß-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher ß-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.

8.
J Phys Chem Lett ; 15(20): 5543-5548, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38752860

RESUMEN

Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered ß-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and ß-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.


Asunto(s)
Caseínas , Muramidasa , Termolisina , Muramidasa/química , Muramidasa/metabolismo , Termolisina/química , Termolisina/metabolismo , Caseínas/química , Glicerol/química , Agua/química , Glucosa/química , Difracción de Neutrones , Simulación de Dinámica Molecular
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124684, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38981290

RESUMEN

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments. Our multi-technique approach is based on the combined use of a set of contactless spectroscopic tools. Circular dichroism and UV resonance Raman spectroscopy probe ligand-induced conformational changes in the G4 sequence, while UV-visible absorption, coupled with steady-state fluorescence spectroscopy, provides further insights into the electronic features of the complex, exploiting the photoresponsive properties of BRACO19. Overall, we find that modifying the topology of the unbound Tel22 through cations (K+ or Na+), serves as a critical determinant for ligand interactions and binding modes, thus influencing the HT-G4's assembly capabilities. Furthermore, we show how fluorescence serves as a valuable probe for recognizing cation-driven multimeric structures, which may be present in living organisms, giving rise to pathological forms.

10.
Microorganisms ; 10(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889194

RESUMEN

Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using five two-fold serial dilution of compound concentrations ≤EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were performed in triplicate, each being repeated at least three times. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p < 0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p < 0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p = 0.01) and 13.08 (p < 0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro.

11.
J Phys Chem Lett ; 12(33): 8096-8102, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34406777

RESUMEN

Nucleic acid sequences rich in guanines can organize into noncanonical DNA G-quadruplexes (G4s) of variable size. The design of small molecules stabilizing the structure of G4s is a rapidly growing area for the development of novel anticancer therapeutic strategies and bottom-up nanotechnologies. Among a multitude of binders, porphyrins are very attractive due to their light activation that can make them valuable conformational regulators of G4s. Here, a structure-based strategy, integrating complementary probes, is employed to study the interaction between TMPyP4 porphyrin and a 22-base human telomeric sequence (Tel22) before and after irradiation with blue light. Porphyrin binding is discovered to promote Tel22 dimerization, while light irradiation of the Tel22-TMPyP4 complex controls dimer fraction. Such a change in quaternary structure is found to be strictly correlated with modifications at the secondary structure level, thus providing an unprecedented link between the degree of dimerization and the underlying conformational changes in G4s.


Asunto(s)
ADN/química , G-Cuádruplex , Porfirinas/química , Rayos X , Dicroismo Circular , Dimerización , Estructura Molecular , Dispersión de Radiación , Telómero
12.
Sci Rep ; 11(1): 9283, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927258

RESUMEN

The maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.


Asunto(s)
Antivirales/química , COVID-19/metabolismo , Proteasas 3C de Coronavirus/química , Inhibidores de Proteasas/química , SARS-CoV-2/fisiología , Antivirales/farmacología , COVID-19/terapia , Biología Computacional , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Dimerización , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Termodinámica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA