Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379249

RESUMEN

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

2.
Mol Med ; 28(1): 39, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365098

RESUMEN

BACKGROUND: Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine. METHODS: Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and between luminal and basal types. RESULTS: Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) yielded an Area Under the Curve (AUC) of 0.92 ± 0.06 in discriminating between BC and CTRL, an accuracy which was superior either to miRNAs (AUC = 0.84 ± 0.03) or SERS data (AUC = 0.84 ± 0.05) individually. When evaluating the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC of 0.95 ± 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) individually, although SERS alone performed better in terms of classification accuracy. CONCLUSION: miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Teorema de Bayes , Biomarcadores de Tumor/genética , Humanos , Biopsia Líquida , MicroARNs/genética , Sistemas de Atención de Punto , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética
3.
J Cell Mol Med ; 25(24): 11039-11052, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34791807

RESUMEN

Acute myeloid leukaemia (AML) is an aggressive form of blood cancer that carries a dismal prognosis. Several studies suggest that the poor outcome is due to a small fraction of leukaemic cells that elude treatment and survive in specialised, oxygen (O2 )-deprived niches of the bone marrow. Although several AML drug targets such as FLT3, IDH1/2 and CD33 have been established in recent years, survival rates remain unsatisfactory, which indicates that other, yet unrecognized, mechanisms influence the ability of AML cells to escape cell death and to proliferate in hypoxic environments. Our data illustrates that Carbonic Anhydrases IX and XII (CA IX/XII) are critical for leukaemic cell survival in the O2 -deprived milieu. CA IX and XII function as transmembrane proteins that mediate intracellular pH under low O2 conditions. Because maintaining a neutral pH represents a key survival mechanism for tumour cells in O2 -deprived settings, we sought to elucidate the role of dual CA IX/XII inhibition as a novel strategy to eliminate AML cells under hypoxic conditions. Our findings demonstrate that the dual CA IX/XII inhibitor FC531 may prove to be of value as an adjunct to chemotherapy for the treatment of AML.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Hipoxia Tumoral/efectos de los fármacos , Adulto , Anciano , Animales , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/genética , Anhidrasas Carbónicas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Duplicación de Gen , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Masculino , Persona de Mediana Edad , Hipoxia Tumoral/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Tirosina Quinasa 3 Similar a fms/genética
4.
J Liposome Res ; 31(1): 1-10, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31631726

RESUMEN

The goal of the current study was to investigate the pharmacokinetic profile, tissue distribution and adverse effects of long-circulating liposomes (LCL) with curcumin (CURC) and doxorubicin (DOX), in order to provide further evidence for previously demonstrated enhanced antitumor efficacy in colon cancer models. The pharmacokinetic studies were carried out in healthy rats, following the i.v. injection of a single dose of LCL-CURC-DOX (1 mg/kg DOX). For the tissue distribution study, DOX concentration in tumours, heart and liver were measured after the administration of two i.v. doses of LCL-CURC-DOX (2.5 mg/kg DOX and 5 mg/kg CURC) to Balb/c mice bearing C26 colon tumours. Markers of murine cardiac and hepatic oxidative status were determined to provide additional insights into the benefit of co-encapsulating CURC and DOX in LCL over DOX-induced adverse effects in these organs. The current study demonstrated that the liposomal association of CURC and DOX effectively improved the pharmacokinetics and biodistribution of DOX, limiting its side effects, via CURC-dependent antioxidant effects.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacocinética , Carcinoma/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Curcumina/química , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Animales , Antibióticos Antineoplásicos/química , Cápsulas , Doxorrubicina/química , Liposomas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Tamaño de la Partícula , Ratas
5.
Molecules ; 26(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504095

RESUMEN

The silver content of the skin regeneration ointments can influence its regeneration process but in the meantime, it can take the benefit of the antibacterial properties of silver by avoiding the bacterial infection of an open wound. In the current study, the skin healing and regeneration capacity of bioactive glass with spherical gold nanocages (BGAuIND) in the Vaseline ointments were evaluated in vivo comparing the bioactive glass (BG)-Vaseline and bioactive glass with spherical gold (BGAuSP)-Vaseline ointments. Spherical gold nanocages are stabilized with silver and as a consequence the BGAuIND exhibits great antibacterial activity. Histological examination of the cutaneous tissue performed on day 8 indicates a more advanced regeneration process in rats treated with BGAuSP-Vaseline. The histopathological examination also confirms the results obtained after 11 days post-intervention, when the skin is completely regenerated at rats treated with BGAuSP-Vaseline compared with the others groups where the healing was incomplete. This result is also confirmed by the macroscopic images of the evolution of wounds healing. As expected, the silver content influences the wound healing process but after two weeks, for all of the post-interventional trials from the groups of rats, the skin healing was completely.


Asunto(s)
Vidrio/química , Oro/química , Nanopartículas del Metal/química , Regeneración/efectos de los fármacos , Silicatos/química , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Femenino , Humanos , Ratas , Plata/química
6.
Cancer Sci ; 111(4): 1344-1356, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31960547

RESUMEN

5-Fluorouracil-based therapy remains the main approach in colorectal cancer, even though there are still some drawbacks, such as chemoresistance. In this study we combined 5-fluorouracil encapsulated in long-circulating liposomes with simvastatin, also encapsulated in long-circulating liposomes, that was previously proved to exert antitumor actions on the same tumor model. The production of angiogenic/inflammatory proteins was assessed by protein array and the production of markers for tumor aggressiveness (Bcl-2, Bax, and nuclear factor [NF]-κB) were determined by western blot analysis. Intratumor oxidative stress was evaluated through measurement of malondialdehyde level by HPLC, and through spectrophotometric analysis of catalytic activity of catalase and of total antioxidant capacity. Immunohistochemical analysis of tumors for CD31 expression was assessed. Intratumor activity of MMP-2 by gelatin zymography was also carried out. Our results revealed that combined therapies based on liposomal formulations exerted enhanced antitumor activities compared with combined treatment with free drugs. Sequential treatment with liposomal simvastatin and liposomal 5-fluorouracil showed the strongest antitumor activity in C26 colon carcinoma in vivo, mainly through inhibition of tumor angiogenesis. Important markers for cancer progression (Bcl-2, Bax, NF-κB, and intratumor antioxidants) showed that liposomal simvastatin might sensitize C26 cells to liposomal 5-fluorouracil treatment in both regimens tested. The outcome of simultaneous treatment with liposomal formulations was superior to sequential treatment with both liposomal types as the invasive capacity of C26 tumors was strongly increased after the latest treatment. The antitumor efficacy of combined therapy in C26 colon carcinoma might be linked to the restorative effects on proteins balance involved in tumor angiogenesis.


Asunto(s)
Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Simvastatina/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas/farmacología , Ratones , FN-kappa B/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética
7.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340166

RESUMEN

Regardless of recent progress, melanoma is very difficult to treat, mainly due to the drug resistance modulated by tumor cells as well as by the tumor microenvironment (TME). Among the immune cells recruited at the tumor site, tumor associated macrophages (TAMs) are the most abundant, promoting important tumorigenic processes: angiogenesis, inflammation and invasiveness. Furthermore, it has been shown that TAMs are involved in mediating the drug resistance of melanoma cells. Thus, in the present study, we used liposomal formulation of prednisolone disodium phosphate (LCL-PLP) to inhibit the protumor function of TAMs with the aim to sensitize the melanoma cells to the cytotoxic drug doxorubicin (DOX) to which human melanoma has intrinsic resistance. Consequently, we evaluated the in vivo effects of the concomitant administration of LCL-PLP and liposomal formulation of DOX (LCL-DOX) on B16.F10 melanoma growth and on the production of key molecular markers for tumor development. Our results demonstrated that the concomitant administration of LCL-PLP and LCL-DOX induced a strong inhibition of tumor growth, primarily by inhibiting TAMs-mediated angiogenesis as well as the tumor production of MMP-2 and AP-1. Moreover, our data suggested that the combined therapy also affected TME as the number of infiltrated macrophages in melanoma microenvironment was reduced significantly.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liposomas , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Neovascularización Patológica/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Biomarcadores , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Ratones , Neovascularización Patológica/tratamiento farmacológico , Estrés Oxidativo , Prednisolona/administración & dosificación , Prednisolona/análogos & derivados
8.
Nanotechnology ; 30(31): 315701, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30974419

RESUMEN

This paper presents the fabrication and characterization of new gold-silver core-shell nanoparticles labeled with para-mercaptobenzoic acid (4MBA) molecules and demonstrates their use as surface-enhanced Raman spectroscopy (SERS)-nanotags with ultra-bright traceability inside cells and ability to convey spectrally-coded information about the intracellular pH by means of SERS. Unlike previous reported studies, our fabrication procedure includes in the first step the synthesis of chitosan-coated gold nanoparticles as a seed material with subsequent growing of a silver shell. The bimetallic core-shell structure is revealed by transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, energy-dispersive x-ray elemental mapping and the presence of two interacting localized surface plasmon resonance modes in UV-vis extinction spectrum. The high SERS activity and sensitivity of as fabricated 4MBA-chit-Au-AgNPs nano-constructs to different pH in solution is investigated under 532 and 633 nm laser lines excitation. Next, in view of future studies in cancer diagnosis, the in vitro antiproliferative effects of SERS-nanotags against human ovarian adenocarcinoma cells (NIH:OVCAR-3) are evaluated. The capacity to operate as bright SERS nanotags with precise localization at a single cell level as well as intracellular pH indicators is clearly demonstrated by performing cell imaging under scanning confocal Raman microscopy.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Neoplasias Ováricas/diagnóstico , Plata/química , Espectrometría Raman/métodos , Benzoatos/química , Línea Celular Tumoral , Femenino , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Ováricas/química , Compuestos de Sulfhidrilo/química
9.
J Liposome Res ; 28(1): 49-61, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27788618

RESUMEN

Quality by design principles (QbD) were used to assist the formulation of prednisolone-loaded long-circulating liposomes (LCL-PLP) in order to gain a more comprehensive understanding of the preparation process. This approach enables us to improve the final product quality in terms of liposomal drug concentration, encapsulation efficiency and size, and to minimize preparation variability. A 19-run D-optimal experimental design was used to study the impact of the highest risk factors on PLP liposomal concentration (Y1- µg/ml), encapsulation efficiency (Y2-%) and size (Y3-nm). Out of six investigated factors, four of them were identified as critical parameters affecting the studied responses. PLP molar concentration and the molar ratio of DPPC to MPEG-2000-DSPE had a positive impact on both Y1 and Y2, while the rotation speed at the formation of the lipid film had a negative impact. Y3 was highly influenced by prednisolone molar concentration and extrusion temperature. The accuracy and robustness of the model was further on confirmed. The developed model was used to optimize the formulation of LCL-PLP for efficient accumulation of the drug to tumor tissue. The cytotoxicity of the optimized LCL-PLP on C26 murine colon carcinoma cells was assessed. LCL-PLP exerted significant anti-angiogenic and anti-inflammatory effects on M2 macrophages, affecting indirectly the C26 colon carcinoma cell proliferation and development.


Asunto(s)
Liposomas/química , Prednisolona/química , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Línea Celular , Proliferación Celular , Supervivencia Celular , Preparaciones de Acción Retardada , Liberación de Fármacos , Humanos , Lípidos/química , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Prednisolona/farmacología , Propiedades de Superficie
10.
J Liposome Res ; 25(4): 261-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25487170

RESUMEN

Simvastatin (SIM) is a lipophilic statin that has potential benefits for prevention and treatment of several types of malignancies. However, its low water solubility and the toxicity associated with administration of high doses recommend it for encapsulation in carriers able to deliver the therapeutic dose in the tumor. In this work, liposomes with long-circulating properties were proposed as delivery systems for SIM. The objective of this study was to optimize the formulation of SIM-loaded long-circulating liposomes (LCL-SIM) by using D-optimal experimental design. The influence of phospholipids concentration, phospholipids to cholesterol molar ratio and SIM concentration was studied on SIM liposomal concentration, encapsulation efficiency and liposomal size. The optimized formulation had liposomal SIM concentration 6238 µg/ml, EE % of 83.4% and vesicle size of 190.5 nm. Additionally we evaluated the in vitro cytotoxicity of the optimized liposomal SIM (LCL-SIM-OPT) on C26 murine colon carcinoma cells cultivated in monoculture as well as in co-culture with murine peritoneal macrophages at a cell density ratio that provides an approximation of physiological conditions of colon carcinoma development in vivo. Our preliminary studies suggested that LCL-SIM-OPT exerted cytotoxicity on C26 cells probably via enhancement of oxidative stress in co-culture environment.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Simvastatina/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Liposomas , Ratones , Tamaño de la Partícula , Simvastatina/química , Simvastatina/farmacología , Relación Estructura-Actividad , Propiedades de Superficie , Células Tumorales Cultivadas
11.
J Microencapsul ; 32(7): 619-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26299551

RESUMEN

Statins are drugs traditionally used to lower cholesterol levels in blood. At concentrations 100- to 500-fold higher than those needed for reaching cholesterol lowering activity, they have anti-tumour activity. This anti-tumour activity is based on statins pleiotropic effects derived from their ability to inhibit the mevalonate synthesis and include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-inflammatory, anti-metastatic actions and modulatory effects on intra-tumour oxidative stress. Thus, in this review, we summarise the possible pleiotropic actions of statins involved in tumour growth inhibition. Since the administration of these high doses of statins is accompanied by severe side effects, targeted delivery of statins seems to be the appropriate strategy for efficient application of statins in oncology. Therefore, we also present an overview of the current status of targeted delivery systems for statins with possible utilisation in oncology.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación
12.
J Cell Mol Med ; 18(9): 1727-39, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25091020

RESUMEN

Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA.


Asunto(s)
Colágeno Tipo VII/inmunología , Epidermólisis Ampollosa Adquirida/inmunología , Epítopos/inmunología , Animales , Mapeo Epitopo , Femenino , Masculino , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Fragmentos de Péptidos/inmunología , Estructura Terciaria de Proteína , Conejos , Piel/inmunología , Piel/patología
13.
Anticancer Drugs ; 25(4): 393-405, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24441744

RESUMEN

Statins, as inhibitors of de-novo synthesis of cholesterol, exert cytotoxic actions on tumor cells. Despite the increasing data on the antitumoral activities of statins, their complete mechanisms of action still remain obscure. Therefore, the present study aims to investigate the mechanisms of lipophilic statin-induced cytotoxicity on B16.F10 murine melanoma cells in vitro. In-vitro effects of two lipophilic statins, simvastatin and lovastatin, and a hydrophilic statin, pravastatin, were investigated with respect to B16.F10 murine melanoma cell proliferation and viability. Our results show that only lipophilic statins exerted strong cytotoxic effects on B16.F10 melanoma cells. To gain further evidence on the pleiotropic effects of statins responsible for their cytotoxicity in B16.F10 cells, we have assessed their proapoptotic effects by Annexin V-fluorescein isothiocyanate/propidium iodide staining and measured tumor cell production of the hypoxia-inducible factor 1α by western blot analysis, nonenzymatic antioxidant levels by an antioxidant colorimetric assay, and superoxide dismutase activity through an indirect method on the basis of inhibition of xanthine oxidase activity. Protein array was also used to assess angiogenic/inflammatory protein production in B16.F10 cells. Our results pointed out that the cytotoxic actions exerted by lipophilic statins were mainly based on the suppressive actions of these drugs on hypoxia-inducible factor 1α expression and nonenzymatic antioxidant levels, as well as because of the inhibition of superoxide dismutase activity in B16.F10 melanoma cells. In addition, the reduction in the angiogenic/inflammatory capacity of tumor cells induced by lipophilic statins can strengthen and support their cytotoxicity.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Melanoma Experimental , Ratones , Necrosis , Oxidación-Reducción , Estrés Oxidativo , Pravastatina/farmacología , Simvastatina/farmacología
14.
BMC Immunol ; 13: 16, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22471736

RESUMEN

BACKGROUND: Autoimmunity to collagen VII is typically associated with the skin blistering disease epidermolysis bullosa acquisita (EBA), but also occurs occasionally in patients with systemic lupus erythematosus or inflammatory bowel disease. The aim of our present study was to develop an accurate immunoassay for assessing the presence of autoantibodies against collagen VII in large cohorts of patients and healthy donors. METHODS: Based on in silico antigenic analysis and previous wetlab epitope mapping data, we designed a chimeric collagen VII construct containing all collagen VII epitopes with higher antigenicity. ELISA was performed with sera from patients with EBA (n = 50), Crohn's disease (CD, n = 50), ulcerative colitis (UC, n = 50), bullous pemphigoid (BP, n = 76), and pemphigus vulgaris (PV, n = 42) and healthy donors (n = 245). RESULTS: By ELISA, the receiver operating characteristics analysis yielded an area under the curve of 0.98 (95% CI: 0.9638-1.005), allowing to set the cut-off at 0.32 OD at a calculated specificity of 98% and a sensitivity of 94%. Running the optimized test showed that serum IgG autoantibodies from 47 EBA (94%; 95% CI: 87.41%-100%), 2 CD (4%; 95% CI: 0%-9.43%), 8 UC (16%; 95% CI: 5.8%-26%), 2 BP (2.63%; 95% CI: 0%-6.23%), and 4 PV (9.52%; 95% CI: 0%-18.4%) patients as well as from 4 (1.63%; 95% CI: 0%-3.21%) healthy donors reacted with the chimeric protein. Further analysis revealed that in 34%, 37%, 16% and 100% of sera autoantibodies of IgG1, IgG2, IgG3, and IgG4 isotype, respectively, recognized the recombinant autoantigen. CONCLUSIONS: Using a chimeric protein, we developed a new sensitive and specific ELISA to detect collagen specific antibodies. Our results show a low prevalence of collagen VII-specific autoantibodies in inflammatory bowel disease, pemphigus and bullous pemphigoid. Furthermore, we show that the autoimmune response against collagen VII is dominated by IgG4 autoantibodies. The new immunoassay should prove a useful tool for clinical and translational research and should improve the routine diagnosis and disease monitoring in diseases associated with collagen VII-specific autoimmunity.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes/sangre , Colágeno Tipo VII/inmunología , Ensayo de Inmunoadsorción Enzimática , Inflamación/sangre , Enfermedades Autoinmunes/inmunología , Proteína C-Reactiva/metabolismo , Células Cultivadas , Colágeno Tipo VII/genética , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Humanos , Inmunoglobulina G/sangre , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Ingeniería de Proteínas , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
15.
J Immunol ; 185(8): 4938-47, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20861347

RESUMEN

As a type II transmembrane protein in basal keratinocytes, collagen XVII provides stable adhesion between epidermis and dermis in the skin. Its ectodomain can be shed from the cell surface, and autoantibodies in certain blistering diseases preferentially recognize the shed form. Major epitopes of collagen XVII are clustered within the juxtamembranous noncollagenous 16th A domain, and ectodomain shedding occurs within this region, suggesting that cleavage generates neoepitopes. However, the candidate cleavage sites have been controversial, and the mechanism of neoepitope generation is unclear. In this study, we investigated cleavage sites in the noncollagenous 16th A domain to understand the generation of neoepitopes and their pathological role. Polyclonal Abs recognizing the stretch Leu(524)-Gly(532) preferentially reacted with the shed ectodomain, but not with the full-length form, indicating that a neoepitope was localized at this site. The neoepitope-specific Ab fixed complement and induced granulocyte-dependent dermal-epidermal separation in cryosections of normal human skin. The physiological cleavage sites were identified using mass spectrometry. N termini were found at Asp(514), Leu(524), Glu(525), and Gly(526), among which Asp(514) and Glu(525) were blocked by acetylation and pyroglutaminate. In silico prediction of B cell epitopes indicated that the antigenicity of the Leu(524)-Gly(532) region increased substantially after shedding, regardless of the cleavage sites. Correspondingly, neoepitopes were found in the skin and blister fluids of patients with bullous pemphigoid, and bullous pemphigoid sera reacted with the peptide Leu(524)-Gly(532). Taken together, these data demonstrate that physiological shedding of collagen XVII generates neoepitopes, which may serve as a target of blister-inducing autoantibodies.


Asunto(s)
Autoantígenos/inmunología , Epítopos de Linfocito B/inmunología , Colágenos no Fibrilares/inmunología , Penfigoide Ampolloso/inmunología , Secuencia de Aminoácidos , Autoanticuerpos/inmunología , Autoantígenos/química , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/química , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Colágenos no Fibrilares/química , Conformación Proteica , Colágeno Tipo XVII
16.
Front Pharmacol ; 13: 870347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450036

RESUMEN

Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.

17.
Biomedicines ; 10(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35203443

RESUMEN

Renal cancer (RC) represents 3% of all cancers, with a 2% annual increase in incidence worldwide, opening the discussion about the need for screening. However, no established screening tool currently exists for RC. To tackle this issue, we assessed surface-enhanced Raman scattering (SERS) profiling of serum as a liquid biopsy strategy to detect renal cell carcinoma (RCC), the most prevalent histologic subtype of RC. Thus, serum samples were collected from 23 patients with RCC and 27 controls (CTRL) presenting with a benign urological pathology such as lithiasis or benign prostatic hypertrophy. SERS profiling of deproteinized serum yielded SERS band spectra attributed mainly to purine metabolites, which exhibited higher intensities in the RCC group, and Raman bands of carotenoids, which exhibited lower intensities in the RCC group. Principal component analysis (PCA) of the SERS spectra showed a tendency for the unsupervised clustering of the two groups. Next, three machine learning algorithms (random forest, kNN, naïve Bayes) were implemented as supervised classification algorithms for achieving discrimination between the RCC and CTRL groups, yielding an AUC of 0.78 for random forest, 0.78 for kNN, and 0.76 for naïve Bayes (average AUC 0.77 ± 0.01). The present study highlights the potential of SERS liquid biopsy as a diagnostic and screening strategy for RCC. Further studies involving large cohorts and other urologic malignancies as controls are needed to validate the proposed SERS approach.

18.
Cancer Biol Ther ; 23(1): 1-16, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34964693

RESUMEN

Tailoring extracellular vesicles (EVs) as targeted drug delivery systems to enhance the therapeutic efficacy showed superior advantage over liposomal therapies. Herein, we developed a novel nanotool for targeting B16.F10 murine melanoma, based on EVs stabilized with Polyethylene glycol (PEG) and loaded with doxorubicin (DOX). Small EVs were efficiently enriched from melanoma cells cultured under metabolic stress by ultrafiltration coupled with size exclusion chromatography (UF-SEC) and characterized by size, morphology, and proteome. To reduce their clearance in vivo, EVs were PEGylated and passively loaded with DOX (PEG-EV-DOX). Our data suggested that the low PEG coverage of EVs might still favor EV surface protein interactions with target proteins from intratumor cells, ensuring their use as "Trojan horses" to deliver DOX to the tumor tissue. Moreover, our results showed a superior antitumor activity of PEG-EV-DOX in B16.F10 murine melanoma models in vivo compared to that exerted by clinically applied liposomal DOX in the same tumor model. The PEG-EV-DOX administration in vivo reduced NF-κB activation and increased BAX expression, suggesting better prognosis of EV-based therapy than liposomal DOX treatment. Collectively, our results highlight the promising potential of EVs as optimal tools for systemic delivery of DOX to solid tumors.


Asunto(s)
Vesículas Extracelulares , Melanoma Experimental , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Polietilenglicoles/uso terapéutico
19.
Colloids Surf B Biointerfaces ; 203: 111755, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33862575

RESUMEN

Herein, we report the fabrication of a nanotherapeutic platform integrating near-infrared (NIR) imaging with combined therapeutic potential through photodynamic (PDT) and photothermal therapies (PTT) and recognition functionality against ovarian cancer. Owing to its NIR fluorescence, singlet oxygen generation and heating capacity, IR780 iodide is exploited to construct a multifunctional nanosystem for single-wavelength NIR laser imaging-assisted dual-modal phototherapy. We opted for loading IR780 into polymeric Pluronic-F127-chitosan nanoformulation in order to overcome its hydrophobicity and toxicity and to allow functionalization with folic acid. The obtained nanocapsules show temperature-dependent swelling and spectroscopic behavior with favorable size distribution for cellular uptake at physiological temperatures, improved fluorescence properties and good stability. The fabricated nanocapsules can efficiently generate singlet oxygen in solution and are able to produce considerable temperature increase (46 °C) upon NIR laser irradiation. Viability assays on NIH-OVCAR-3 cells confirm the successful biocompatibilization of IR780 by encapsulating in Pluronic and chitosan polymers. NIR fluorescence imaging assays reveal the ability of folic-acid functionalized nanocapsules to serve as intracellular contrast agents and demonstrate their active targeting capacity against folate receptor expressing ovarian cancer cells (NIH-OVCAR-3). Consequently, the targeted nanocapsules show improved NIR laser induced phototherapeutic performance against NIH-OVCAR-3 cells compared to free IR780. We anticipate that this class of nanocapsules holds great promise as theranostic agents for application in image-guided dual PDT-PTT and imaging assisted surgery of ovarian cancer.


Asunto(s)
Quitosano , Hipertermia Inducida , Nanocápsulas , Neoplasias Ováricas , Fotoquimioterapia , Apoptosis , Línea Celular Tumoral , Quitosano/análogos & derivados , Femenino , Ácido Fólico , Humanos , Indoles , Imagen Óptica , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Fototerapia
20.
Sci Rep ; 11(1): 22102, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764332

RESUMEN

Anti-angiogenic therapies for melanoma have not yet been translated into meaningful clinical benefit for patients, due to the development of drug-induced resistance in cancer cells, mainly caused by hypoxia-inducible factor 1α (HIF-1α) overexpression and enhanced oxidative stress mediated by tumor-associated macrophages (TAMs). Our previous study demonstrated synergistic antitumor actions of simvastatin (SIM) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on an in vitro melanoma model via suppression of the aggressive phenotype of melanoma cells and inhibition of TAMs-mediated angiogenesis. Therefore, we took the advantage of long circulating liposomes (LCL) superior tumor targeting capacity to efficiently deliver SIM and DMXAA to B16.F10 melanoma in vivo, with the final aim of improving the outcome of the anti-angiogenic therapy. Thus, we assessed the effects of this novel combined tumor-targeted treatment on s.c. B16.F10 murine melanoma growth and on the production of critical markers involved in tumor development and progression. Our results showed that the combined liposomal therapy almost totally inhibited (> 90%) the growth of melanoma tumors, due to the enhancement of anti-angiogenic effects of LCL-DMXAA by LCL-SIM and simultaneous induction of a pro-apoptotic state of tumor cells in the tumor microenvironment (TME). These effects were accompanied by the partial re-education of TAMs towards an M1 phenotype and augmented by combined therapy-induced suppression of major invasion and metastasis promoters (HIF-1α, pAP-1 c-Jun, and MMPs). Thus, this novel therapy holds the potential to remodel the TME, by suppressing its most important malignant biological capabilities.


Asunto(s)
Liposomas/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Simvastatina/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Xantonas/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA