Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 147(2): 607-626, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769652

RESUMEN

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.


Asunto(s)
Afasia Progresiva Primaria , Apraxias , Afasia Progresiva Primaria no Fluente , Humanos , Afasia de Broca/patología , Estudios Prospectivos , Disartria , Habla , Estudios Transversales , Apraxias/patología , Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria no Fluente/complicaciones
2.
Neurocase ; 28(5): 419-431, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36450280

RESUMEN

Diagnostic criteria for dyslexia describe specific reading difficulties, and single-deficit models, including the phonological deficit theory, have prevailed. Children seeking diagnosis, however, do not always show phonological deficits, and may present with strengths and challenges beyond reading. Through extensive neurological, neuropsychological, and academic evaluation, we describe four children with visuospatial, socio-emotional, and attention impairments and spared phonology, alongside long-standing reading difficulties. Diffusion tensor imaging revealed white matter alterations in inferior longitudinal, uncinate, and superior longitudinal fasciculi versus neurotypical children. Findings emphasize that difficulties may extend beyond reading in dyslexia and underscore the value of deep phenotyping in learning disabilities.


Asunto(s)
Dislexia , Sustancia Blanca , Niño , Humanos , Imagen de Difusión Tensora , Fonética , Dislexia/psicología , Lectura
3.
Cortex ; 171: 165-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000139

RESUMEN

Prior research has revealed distinctive patterns of impaired language abilities across the three variants of Primary Progressive Aphasia (PPA): nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). However, little is known about whether, and to what extent, non-verbal cognitive abilities, such as processing speed, are impacted in PPA patients. This is because neuropsychological tests typically contain linguistic stimuli and require spoken output, being therefore sensitive to verbal deficits in aphasic patients. The aim of this study is to investigate potential differences in processing speed between PPA patients and healthy controls, and among the three PPA variants, using a brief non-verbal tablet-based task (Match) modeled after the WAIS-III digit symbol coding test, and to determine its neural correlates. Here, we compared performance on the Match task between PPA patients (n = 61) and healthy controls (n = 59) and across the three PPA variants. We correlated performance on Match with voxelwise gray and white matter volumes. We found that lvPPA and nfvPPA patients performed significantly worse on Match than healthy controls and svPPA patients. Worse performance on Match across PPA patients was associated with reduced gray matter volume in specific parts of the left middle frontal gyrus, superior parietal lobule, and precuneus, and reduced white matter volume in the left parietal lobe. To conclude, our behavioral findings reveal that processing speed is differentially impacted across the three PPA variants and provide support for the potential clinical utility of a tabled-based task (Match) to assess non-verbal cognition. In addition, our neuroimaging findings confirm the importance of a set of fronto-parietal regions that previous research has associated with processing speed and executive control. Finally, our behavioral and neuroimaging findings combined indicate that differences in processing speed are largely explained by the unequal distribution of atrophy in these fronto-parietal regions across the three PPA variants.


Asunto(s)
Afasia Progresiva Primaria , Humanos , Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/psicología , Velocidad de Procesamiento , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral
4.
Neuroimage Clin ; 37: 103329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701874

RESUMEN

Primary Progressive Aphasia (PPA) is a neurodegenerative disorder primarily affecting language functions. Neuromodulatory techniques (e.g., transcranial direct current stimulation, active-tDCS) and behavioral (speech-language) therapy have shown promising results in treating speech and language deficits in PPA patients. One mechanism of active-tDCS efficacy is through modulation of network functional connectivity (FC). It remains unknown how biological sex influences FC and active-tDCS or language treatment(s). In the current study, we compared sex differences, induced by active-tDCS and language therapy alone, in the default mode and language networks, acquired during resting-state fMRI in 36 PPA patients. Using a novel statistical method, the covariate-assisted-principal-regression (CAPs) technique, we found sex and age differences in FC changes following active-tDCS. In the default mode network (DMN): (1) men (in both conditions) showed greater FC in DMN than women. (2) men who received active-tDCS showed greater FC in the DMN than men who received language-treatment only. In the language network: (1) women who received active-tDCS showed significantly greater FC across the language network than women who received sham-tDCS. As age increases, regardless of sex and treatment condition, FC in language regions decreases. The current findings suggest active-tDCS treatment in PPA alters network-specific FC in a sex-dependent manner.


Asunto(s)
Afasia Progresiva Primaria , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/terapia
5.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214875

RESUMEN

Developmental dyslexia (DD) is typically associated with difficulties in manipulating speech sounds and, sometimes, in basic auditory processing. However, the neuroanatomical correlates of auditory difficulties in DD and their contribution to individual clinical phenotypes are still unknown. Recent intracranial electrocorticography (ECoG) findings associated processing of sound amplitude rises and speech sounds with posterior and middle superior temporal gyrus (STG), respectively. We hypothesize that regional STG anatomy will relate to specific auditory abilities in DD and that auditory processing abilities will relate to behavioral difficulties. One hundred and ten children (78 DD, 32 typically developing, age 7-15 years) completed amplitude rise time (ART) and speech in noise discrimination (SiN) tasks. They also underwent a battery of cognitive tests. Anatomical MRI scans were used to identify regions in which local cortical gyrification complexity correlated with auditory tasks in DD. Behaviorally, ART but not SiN performance was impaired in DD. Neurally, ART and SiN performance correlated with gyrification in posterior STG and middle STG, respectively. Furthermore, ART significantly contributed to reading impairments in DD, while SiN explained variance in phonological awareness only. Finally, ART and SiN performance was not correlated, and each task was correlated with distinct neuropsychological measures, such that distinct DD subgroups could be identified. Overall, we provide a direct link between the neurodevelopment of the left STG and individual variability in auditory processing abilities in DD. The dissociation between speech and non-speech deficits supports distinct DD phenotypes and implicates different approaches to interventions.

6.
Front Psychol ; 13: 887591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814055

RESUMEN

Primary progressive aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. Three variants are recognized: logopenic (lvPPA), associated with phonology and/or short-term verbal memory deficits accompanied by left temporo-parietal atrophy; semantic (svPPA), associated with semantic deficits and anterior temporal lobe (ATL) atrophy; non-fluent (nfvPPA) associated with grammar and/or speech-motor deficits and inferior frontal gyrus (IFG) atrophy. Here, we set out to investigate whether the three variants of PPA can be dissociated based on error patterns in a single language task. We recruited 21 lvPPA, 28 svPPA, and 24 nfvPPA patients, together with 31 healthy controls, and analyzed their performance on an auditory noun-to-verb generation task, which requires auditory analysis of the input, access to and selection of relevant lexical and semantic knowledge, as well as preparation and execution of speech. Task accuracy differed across the three variants and controls, with lvPPA and nfvPPA having the lowest and highest accuracy, respectively. Critically, machine learning analysis of the different error types yielded above-chance classification of patients into their corresponding group. An analysis of the error types revealed clear variant-specific effects: lvPPA patients produced the highest percentage of "not-a-verb" responses and the highest number of semantically related nouns (production of baseball instead of throw to noun ball); in contrast, svPPA patients produced the highest percentage of "unrelated verb" responses and the highest number of light verbs (production of take instead of throw to noun ball). Taken together, our findings indicate that error patterns in an auditory verb generation task are associated with the breakdown of different neurocognitive mechanisms across PPA variants. Specifically, they corroborate the link between temporo-parietal regions with lexical processing, as well as ATL with semantic processes. These findings illustrate how the analysis of pattern of responses can help PPA phenotyping and heighten diagnostic sensitivity, while providing insights on the neural correlates of different components of language.

7.
J Neuroimaging ; 31(4): 758-772, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33878229

RESUMEN

BACKGROUND AND PURPOSE: Manual segmentation of white matter (WM) bundles requires extensive training and is prohibitively labor-intensive for large-scale studies. Automated segmentation methods are necessary in order to eliminate operator dependency and to enable reproducible studies. Significant changes in the WM landscape throughout childhood require flexible methods to capture the variance across the span of brain development. METHODS: Here, we describe a novel automated segmentation tool called Cortically Constrained Shape Recognition (CCSR), which combines two complementary approaches: (1) anatomical connectivity priors based on FreeSurfer-derived regions of interest and (2) shape priors based on 3-dimensional streamline bundle atlases applied using RecoBundles. We tested the performance and repeatability of this approach by comparing volume and diffusion metrics of the main language WM tracts that were both manually and automatically segmented in a pediatric cohort acquired at the UCSF Dyslexia Center (n = 59; 25 females; average age: 11 ± 2; range: 7-14). RESULTS: The CCSR approach showed high agreement with the expert manual segmentations: across all tracts, the spatial overlap between tract volumes showed an average Dice Similarity Coefficient (DSC) of 0.76, and the fractional anisotropy (FA) on average had a Lin's Concordance Correlation Coefficient (CCC) of 0.81. The CCSR's repeatability in a subset of this cohort achieved a DSC of 0.92 on average across all tracts. CONCLUSION: This novel automated segmentation approach is a promising tool for reproducible large-scale tractography analyses in pediatric populations and particularly for the quantitative assessment of structural connections underlying various clinical presentations in neurodevelopmental disorders.


Asunto(s)
Neoplasias de la Mama , Sustancia Blanca , Adolescente , Anisotropía , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lenguaje , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA