Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22391, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104221

RESUMEN

The inactivation of multi resistant pathogens is an important clinical need. One approach is UV-C irradiation, which was previously not possible in vivo due to cytotoxicity. Recently, far UV-C irradiation at λ < 240 nm was successfully used on skin with negligible damage. A potential application site is the nasal vestibule, where MRSA accumulates and cannot be treated using antiseptics. We irradiated 3D mucosa models and excised human mucosa with 222 and 233 nm far UV-C in comparison to 254 nm and broadband UV-B. Eradication efficiency was evaluated by counting colony forming units; irritation potential was evaluated by hen's egg-chorioallantoic membrane assay and trans epithelial electrical resistance; cell viability was assessed by MTT. DNA damage and cell protective mechanisms were evaluated immunohistopathologically. On mucosa models, MRSA reduced by ≈ 5 log10 for 60 mJ/cm2 irradiation at 233 nm. A slightly increased cell viability was observed after 24 h. Lower doses showed lower irritation potential than the positive controls or commercial mouthwash, while 80 mJ/cm2 had strong irritation potential. DNA damage occurred only superficially and decreased after 24 h. On excised human mucosa, < 10% of keratinocytes were affected after 150 mJ/cm2 222 nm or 60 mJ/cm2 233 nm.


Asunto(s)
Infección Hospitalaria , Mucosa Bucal , Humanos , Animales , Femenino , Pollos , Daño del ADN , Piel , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA