Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31722399

RESUMEN

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Transcripción Genética , Ubiquitina/genética , Línea Celular Transformada , Línea Celular Tumoral , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Rayos Ultravioleta
2.
J Biol Chem ; 292(52): 21282-21290, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29150442

RESUMEN

Epithelioid hemangioma is a locally aggressive vascular neoplasm, found in bones and soft tissue, whose cause is currently unknown, but may involve oncogene activation. FOS is one of the earliest viral oncogenes to be characterized, and normal cellular FOS forms part of the activator protein 1 (AP-1) transcription factor complex, which plays a pivotal role in cell growth, differentiation, and survival as well as the DNA damage response. Despite this, a causal link between aberrant FOS function and naturally occurring tumors has not yet been established. Here, we describe a thorough molecular and biochemical analysis of a mutant FOS protein we identified in these vascular tumors. The mutant protein lacks a highly conserved helix consisting of the C-terminal four amino acids of FOS, which we show is indispensable for fast, ubiquitin-independent FOS degradation via the 20S proteasome. Our work reveals that FOS stimulates endothelial sprouting and that perturbation of normal FOS degradation could account for the abnormal vessel growth typical of epithelioid hemangioma. To the best of our knowledge, this is the first functional characterization of mutant FOS proteins found in tumors.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/fisiología , Neoplasias Vasculares/genética , Inductores de la Angiogénesis , Carcinogénesis/genética , Carcinogénesis/metabolismo , Diferenciación Celular , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes fos/genética , Hemangioma/genética , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Elementos Reguladores de la Transcripción/genética , Neoplasias Vasculares/metabolismo
3.
Angew Chem Int Ed Engl ; 57(29): 8958-8962, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29771001

RESUMEN

SUMO is a post-translational modifier critical for cell cycle progression and genome stability that plays a role in tumorigenesis, thus rendering SUMO-specific enzymes potential pharmacological targets. However, the systematic generation of tools for the activity profiling of SUMO-specific enzymes has proven challenging. We developed a diversifiable synthetic platform for SUMO-based probes by using a direct linear synthesis method, which permits N- and C-terminal labelling to incorporate dyes and reactive warheads, respectively. In this manner, activity-based probes (ABPs) for SUMO-1, SUMO-2, and SUMO-3-specific proteases were generated and validated in cells using gel-based assays and confocal microscopy. We further expanded our toolbox with the synthesis of a K11-linked diSUMO-2 probe to study the proteolytic cleavage of SUMO chains. Together, these ABPs demonstrate the versatility and specificity of our synthetic SUMO platform for in vitro and in vivo characterization of the SUMO protease family.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Péptido Hidrolasas/análisis , Péptidos/química , Péptidos/metabolismo , Proteolisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Técnicas de Síntesis en Fase Sólida , Especificidad por Sustrato
4.
Am J Physiol Cell Physiol ; 311(2): C284-96, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27335169

RESUMEN

Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.


Asunto(s)
Homeostasis/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína SUMO-1/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nat Commun ; 10(1): 3987, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31485003

RESUMEN

In contrast to our extensive knowledge on ubiquitin polymer signaling, we are severely limited in our understanding of poly-SUMO signaling. We set out to identify substrates conjugated to SUMO polymers, using knockdown of the poly-SUMO2/3 protease SENP6. We identify over 180 SENP6 regulated proteins that represent highly interconnected functional groups of proteins including the constitutive centromere-associated network (CCAN), the CENP-A loading factors Mis18BP1 and Mis18A and DNA damage response factors. Our results indicate a striking protein group de-modification by SENP6. SENP6 deficient cells are severely compromised for proliferation, accumulate in G2/M and frequently form micronuclei. Accumulation of CENP-T, CENP-W and CENP-A to centromeres is impaired in the absence of SENP6. Surprisingly, the increase of SUMO chains does not lead to ubiquitin-dependent proteasomal degradation of the CCAN subunits. Our results indicate that SUMO polymers can act in a proteolysis-independent manner and consequently, have a more diverse signaling function than previously expected.


Asunto(s)
Centrómero/metabolismo , Cisteína Endopeptidasas/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral , Proliferación Celular/genética , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cisteína Endopeptidasas/genética , Células HEK293 , Células HeLa , Humanos , Interferencia de ARN , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Cell Rep ; 26(1): 236-249.e4, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605679

RESUMEN

The role of stress-induced increases in SUMO2/3 conjugation during the heat shock response (HSR) has remained enigmatic. We investigated SUMO signal transduction at the proteomic and functional level during the HSR in cells depleted of proteostasis network components via chronic heat shock factor 1 inhibition. In the recovery phase post heat shock, high SUMO2/3 conjugation was prolonged in cells lacking sufficient chaperones. Similar results were obtained upon inhibiting HSP90, indicating that increased chaperone activity during the HSR is critical for recovery to normal SUMO2/3 levels post-heat shock. Proteasome inhibition likewise prolonged SUMO2/3 conjugation, indicating that stress-induced SUMO2/3 targets are subsequently degraded by the ubiquitin-proteasome system. Functionally, we suggest that SUMOylation can enhance the solubility of target proteins upon heat shock, a phenomenon that we experimentally observed in vitro. Collectively, our results implicate SUMO2/3 as a rapid response factor that coordinates proteome degradation and assists the maintenance of proteostasis upon proteotoxic stress.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Células HEK293 , Factores de Transcripción del Choque Térmico/antagonistas & inhibidores , Humanos , Proteómica/métodos , Proteostasis , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA