RESUMEN
PURPOSE: Therapeutic efficacy of hormonal therapies to target estrogen receptor (ER)-positive breast cancer is limited by the acquisition of ligand-independent ESR1 mutations, which confer treatment resistance to aromatase inhibitors (AIs). Monitoring for the emergence of such mutations may enable individualized therapy. We thus assessed CTC- and ctDNA-based detection of ESR1 mutations with the aim of evaluating non-invasive approaches for the determination of endocrine resistance. PATIENTS AND METHODS: In a prospective cohort of 55 women with hormone receptor-positive metastatic breast cancer, we isolated circulating tumor cells (CTCs) and developed a high-sensitivity method for the detection of ESR1 mutations in these CTCs. In patients with sufficient plasma for the simultaneous extraction of circulating tumor DNA (ctDNA), we performed a parallel analysis of ESR1 mutations using multiplex droplet digital PCR (ddPCR) and examined the agreement between these two platforms. Finally, we isolated single CTCs from a subset of these patients and reviewed RNA expression to explore alternate methods of evaluating endocrine responsiveness. RESULTS: High-sensitivity ESR1 sequencing from CTCs revealed mono- and oligoclonal mutations in 22% of patients. These were concordant with plasma DNA sequencing in 95% of cases. Emergence of ESR1 mutations was correlated both with time to metastatic relapse and duration of AI therapy following such recurrence. The Presence of an ESR1 mutation, compared to ESR1 wild type, was associated with markedly shorter Progression-Free Survival on AI-based therapies (p = 0.0006), but unaltered to other non-AI-based therapies (p = 0.73). Compared with ESR1 mutant cases, AI-resistant CTCs with wild-type ESR1 showed an elevated ER-coactivator RNA signature, consistent with their predicted response to second-line hormonal therapies. CONCLUSION: Blood-based serial monitoring may guide the selection of precision therapeutics for women with AI-resistant ER-positive breast cancer.
Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Células Neoplásicas Circulantes , Receptor alfa de Estrógeno/genética , Femenino , Genotipo , Humanos , Mutación , Recurrencia Local de Neoplasia , Estudios ProspectivosRESUMEN
Genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) is a sensitive, unbiased, genome-wide method for defining the activity of genome-editing nucleases in living cells. GUIDE-seq is based on the principle of efficient integration of an end-protected double-stranded oligodeoxynucleotide tag into sites of nuclease-induced DNA double-stranded breaks, followed by amplification of tag-containing genomic DNA molecules and high-throughput sequencing. Here we describe a detailed GUIDE-seq protocol including cell transfection, library preparation, sequencing and bioinformatic analysis. The entire protocol including cell culture can be completed in 9 d. Once tag-integrated genomic DNA is isolated, library preparation, sequencing and analysis can be performed in 3 d. The result is a genome-wide catalog of off-target sites ranked by nuclease activity as measured by GUIDE-seq read counts. GUIDE-seq is one of the most sensitive cell-based methods for defining genome-wide off-target activity and has been broadly adopted for research and therapeutic use.
Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Genoma Humano , Reacción en Cadena de la Polimerasa/métodos , ARN Guía de Kinetoplastida/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cartilla de ADN/síntesis química , Cartilla de ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , Electroporación/métodos , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , ARN Guía de Kinetoplastida/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismoRESUMEN
The quantification of changes in gene copy number is critical to our understanding of tumor biology and for the clinical management of cancer patients. DNA fluorescence in situ hybridization is the gold standard method to detect copy number alterations, but it is limited by the number of genes one can quantify simultaneously. To increase the throughput of this informative technique, a fluorescent bar-code system for the unique labeling of dozens of genes and an automated image analysis algorithm that enabled their simultaneous hybridization for the quantification of gene copy numbers were devised. We demonstrate the reliability of this multiplex approach on normal human lymphocytes, metaphase spreads of transformed cell lines, and cultured circulating tumor cells. It also opens the door to the development of gene panels for more comprehensive analysis of copy number changes in tissue, including the study of heterogeneity and of high-throughput clinical assays that could provide rapid quantification of gene copy numbers in samples with limited cellularity, such as circulating tumor cells.
Asunto(s)
Genómica , Hibridación Fluorescente in Situ/métodos , Algoritmos , Línea Celular Tumoral , Cromosomas Artificiales Bacterianos/genética , Color , Hibridación Genómica Comparativa , Colorantes Fluorescentes/química , Humanos , Sondas Moleculares/química , Reproducibilidad de los ResultadosRESUMEN
INTRODUCTION: Invasive mucinous adenocarcinoma is a unique histologic subtype of lung cancer, and our knowledge of its genetic and clinical characteristics is rapidly evolving. Here, we present next- generation sequencing analysis of nucleotide variant and fusion events along with clinical follow-up in a series of lung mucinous adenocarcinoma. METHODS: We collected 72 mucinous adenocarcinomas from the United States and Korea. All had been previously assessed for KRAS and EGFR mutations. For KRAS wild-type cases (n = 30), we performed deep targeted next-generation sequencing for gene fusions and nucleotide variants and correlated survival and other clinical features. RESULTS: As expected, KRAS mutations were the most common alteration found (63% of cases); however, the distribution of nucleotide position alterations was more similar to that observed in gastrointestinal tumors than other lung tumors. Within the KRAS-negative cases, we found numerous potentially targetable gene fusions and mutations, including CD74-NRG1, VAMP2-NRG1, TRIM4-BRAF, TPM3-NTRK1, and EML4-ALK gene fusions and ERBB2, BRAF, and PIK3CA mutations. Unexpectedly, we found only two cases with TP53 mutation, which is much lower than observed in lung adenocarcinomas in general. The overall mutation burden was low in histologically confirmed mucinous adenocarcinomas from the public The Cancer Genome Atlas exome data set, regardless of smoking history, suggesting a link between TP53 status and mutation burden in mucinous tumors. There was no significant difference for recurrence-free survival between stage-matched mucinous and nonmucinous adenocarcinomas. It was notable that all recurrence sites were in the lungs for completely resected cases. CONCLUSIONS: Our data suggest that mucinous adenocarcinoma is typified by (1) frequent KRAS mutations and a growing list of gene fusions, but rare TP53 mutations, (2) a low mutation burden overall, and (3) a recurrence-free survival similar to stage-matched nonmucinous tumors, with recurrences limited to the lungs.
Asunto(s)
Adenocarcinoma Mucinoso/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Diferenciación de Linfocitos B/genética , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Supervivencia sin Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Invasividad Neoplásica , Neurregulina-1/genética , Fusión de Oncogenes , Proteínas de Fusión Oncogénica/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Receptor ErbB-2/genética , Receptor trkA/genética , Tropomiosina/genética , Proteína p53 Supresora de Tumor/genética , Proteína 2 de Membrana Asociada a Vesículas/genéticaRESUMEN
CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide, off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq), relies on capture of double-stranded oligodeoxynucleotides into DSBs. Application of GUIDE-seq to 13 RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or chromatin immunoprecipitation sequencing (ChIP-seq). GUIDE-seq also identified RGN-independent genomic breakpoint 'hotspots'. Finally, GUIDE-seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced, off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases before clinical use.
Asunto(s)
Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , ARN Guía de Kinetoplastida/genética , Línea Celular , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oligodesoxirribonucleótidos/genética , Edición de ARN/genéticaRESUMEN
We describe a rapid target enrichment method for next-generation sequencing, termed anchored multiplex PCR (AMP), that is compatible with low nucleic acid input from formalin-fixed paraffin-embedded (FFPE) specimens. AMP is effective in detecting gene rearrangements (without prior knowledge of the fusion partners), single nucleotide variants, insertions, deletions and copy number changes. Validation of a gene rearrangement panel using 319 FFPE samples showed 100% sensitivity (95% confidence limit: 96.5-100%) and 100% specificity (95% confidence limit: 99.3-100%) compared with reference assays. On the basis of our experience with performing AMP on 986 clinical FFPE samples, we show its potential as both a robust clinical assay and a powerful discovery tool, which we used to identify new therapeutically important gene fusions: ARHGEF2-NTRK1 and CHTOP-NTRK1 in glioblastoma, MSN-ROS1, TRIM4-BRAF, VAMP2-NRG1, TPM3-NTRK1 and RUFY2-RET in lung cancer, FGFR2-CREB5 in cholangiocarcinoma and PPL-NTRK1 in thyroid carcinoma. AMP is a scalable and efficient next-generation sequencing target enrichment method for research and clinical applications.