Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4939, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999206

RESUMEN

Non-linear processes are a key feature in the emerging field of spin-wave based information processing and allow to convert uniform spin-wave excitations into propagating modes at different frequencies. Recently, the existence of non-linear magnons at half-integer multiples of the driving frequency has been predicted for Ni80Fe20 at low bias fields. However, it is an open question under which conditions such non-linear spin waves emerge coherently and how they may be used in device structures. Usually non-linear processes are explored in the small modulation regime and result in the well known three and four magnon scattering processes. Here we demonstrate and image a class of spin waves oscillating at half-integer harmonics that have only recently been proposed for the strong modulation regime. The direct imaging of these parametrically generated magnons in Ni80Fe20 elements allows to visualize their wave vectors. In addition, we demonstrate the presence of two degenerate phase states that may be selected by external phase-locking. These results open new possibilities for applications such as spin-wave sources, amplifiers and phase-encoded information processing with magnons.

2.
Science ; 375(6585): 1165-1169, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271342

RESUMEN

Frequency multiplication is a process in modern electronics in which harmonics of the input frequency are generated in nonlinear electronic circuits. Devices based on the propagation and interaction of spin waves are a promising alternative to conventional electronics. The characteristic frequency of these excitations is in the gigahertz (GHz) range and devices are not readily interfaced with conventional electronics. Here, we locally probe the magnetic excitations in a soft magnetic material by optical methods and show that megahertz-range excitation frequencies cause switching effects on the micrometer scale, leading to phase-locked spin-wave emission in the GHz range. Indeed, the frequency multiplication process inside the magnetic medium covers six octaves and opens exciting perspectives for spintronic applications, such as all-magnetic mixers or on-chip GHz sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA