Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28614-28624, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139578

RESUMEN

As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/fisiología , Modelos Biológicos , Endosomas/ultraestructura , Células HeLa , Humanos
2.
J Am Chem Soc ; 144(30): 13451-13455, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35878395

RESUMEN

Recent studies have shown that the interactions between condensates and biological membranes are of functional importance. Here, we study how the interaction between complex coacervates and liposomes as model systems can lead to wetting, membrane deformation, and endocytosis. Depending on the interaction strength between coacervates and liposomes, the wetting behavior ranged from nonwetting to engulfment (endocytosis) and complete wetting. Endocytosis of coacervates was found to be a general phenomenon: coacervates made from a wide range of components could be taken up by liposomes. A simple theory taking into account surface energies and coacervate sizes can explain the observed morphologies. Our findings can help to better understand condensate-membrane interactions in cellular systems and provide new avenues for intracellular delivery using coacervates.


Asunto(s)
Endocitosis , Liposomas , Membrana Celular , Humectabilidad
3.
Bioconjug Chem ; 33(7): 1269-1278, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35759354

RESUMEN

Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (Qß) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated Qß conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand-linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future.


Asunto(s)
Bacteriófagos , Virus de la Influenza A , Internalización del Virus , Bacteriófagos/metabolismo , Cápside/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Ligandos , Ácido N-Acetilneuramínico/farmacología , Internalización del Virus/efectos de los fármacos
4.
J Chem Phys ; 156(22): 224902, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705414

RESUMEN

The dielectric constant of water/oligomer mixtures, spanning the range from pure water to pure oligomeric melts, is investigated using molecular dynamics (MD) simulations. As prototypical water-soluble organic substances, we consider neutral poly-glycine, poly-ethylene glycol, and charged monomeric propionic acid. As the water content is reduced, the dielectric constant decreases but does not follow an ideal mixing behavior. The deviations from ideal mixing originate primarily in the non-linear relation between the oligomer mass fraction and collective polarization effects. We find that the dielectric constant is dominated by water polarization, even if the oligomer mass fraction exceeds 50%. By a double extrapolation of the MD simulation results to the limit of vanishing water fraction and to the limit of infinite oligomeric chain length, we estimate the orientational contribution to the dielectric constant of the pure polymeric melts. By this procedure, we obtain ɛ = 17 ± 2 for polyglycine and ɛ = 1 ± 0.3 for polyethylene glycol. The large difference is rationalized by polarization correlations of glycine units. Interestingly, we find constant temperature simulations to outperform replica exchange simulations in terms of equilibration speed.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros , Glicina , Polietilenglicoles , Proteínas , Agua
5.
Biophys J ; 120(12): 2482-2489, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34023296

RESUMEN

The steric repulsion between proteins on biological membranes is one of the most generic mechanisms that cause membrane shape changes. We present a minimal model in which a spontaneous curvature is induced by asymmetric protein crowding. Our results show that the interplay between the induced spontaneous curvature and the membrane tension determines the energy-minimizing shapes, which describes the wide range of experimentally observed membrane shapes, i.e., flat membranes, spherical vesicles, elongated tubular protrusions, and pearling structures. Moreover, the model gives precise predictions on how membrane shape changes by protein crowding can be tuned by controlling the protein size, the density of proteins, and the size of the crowded domain.


Asunto(s)
Proteínas , Membrana Celular , Membranas
6.
Biophys J ; 120(3): 424-431, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359464

RESUMEN

Diffusion is a fundamental mechanism for protein distribution in cell membranes. These membranes often exhibit complex shapes, which range from shallow domes to elongated tubular or pearl-like structures. Shape complexity of the membrane influences the diffusive spreading of proteins and molecules. Despite the importance membrane geometry plays in these diffusive processes, it is challenging to establish the dependence between diffusion and membrane morphology. We solve the diffusion equation numerically on various static curved shapes representative for experimentally observed membrane shapes. Our results show that membrane necks become diffusion barriers. We determine the diffusive half-time, i.e., the time that is required to reduce the amount of protein in the budded region by one half, and find a quadratic relation between the diffusive half-time and the averaged mean curvature of the membrane shape, which we rationalize by a scaling law. Our findings thus help estimate the characteristic diffusive timescale based on the simple measure of membrane mean curvature.


Asunto(s)
Proteínas , Membrana Celular , Difusión , Membranas
7.
J Am Chem Soc ; 142(28): 12181-12192, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538085

RESUMEN

Multivalency is a key principle in reinforcing reversible molecular interactions through the formation of multiple bonds. The influenza A virus deploys this strategy to bind strongly to cell surface receptors. We performed single-molecule force spectroscopy (SMFS) to investigate the rupture force required to break individual and multiple bonds formed between synthetic sialic acid (SA) receptors and the two principal spike proteins of the influenza A virus (H3N2): hemagglutinin (H3) and neuraminidase (N2). Kinetic parameters such as the rupture length (χß) and dissociation rate (koff) are extracted using the model by Friddle, De Yoreo, and Noy. We found that a monovalent SA receptor binds to N2 with a significantly higher bond lifetime (270 ms) compared to that for H3 (36 ms). By extending the single-bond rupture analysis to a multibond system of n protein-receptor pairs, we provide an unprecedented quantification of the mechanistic features of multivalency between H3 and N2 with SA receptors and show that the stability of the multivalent connection increases with the number of bonds from tens to hundreds of milliseconds. Association rates (kon) are also provided, and an estimation of the dissociation constants (KD) between the SA receptors to both proteins indicate a 17-fold higher binding affinity for the SA-N2 bond with respect to that of SA-H3. An optimal designed multivalent SA receptor showed a higher binding stability to the H3 protein of the influenza A virus than to the monovalent SA receptor. Our study emphasizes the influence of the scaffold on the presentation of receptors during multivalent binding.


Asunto(s)
Ácidos Siálicos/química , Glicoproteína de la Espiga del Coronavirus/química , Subtipo H3N2 del Virus de la Influenza A/química , Microscopía de Fuerza Atómica , Estructura Molecular
8.
Small ; 16(38): e2002529, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32776465

RESUMEN

Elevated temperatures might have promoted the nucleation, growth, and replication of protocells on the early Earth. Recent reports have shown evidence that moderately high temperatures not only permit protocell assembly at the origin of life, but can have actively supported it. Here, the fast nucleation and growth of vesicular compartments from autonomously formed lipid networks on solid surfaces, induced by a moderate increase in temperature, are shown. Branches of the networks, initially consisting of self-assembled interconnected nanotubes, rapidly swell into microcompartments which can spontaneously encapsulate RNA fragments. The increase in temperature further causes fusion of adjacent network-connected compartments, resulting in the redistribution of the RNA. The experimental observations and the mathematical model indicate that the presence of nanotubular interconnections between protocells facilitates the fusion process.


Asunto(s)
Células Artificiales , Nanotubos , Membrana Celular , ARN
9.
Soft Matter ; 16(48): 10889-10899, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33125025

RESUMEN

A wide range of proteins are known to create shape transformations of biological membranes, where the remodelling is a coupling between the energetic costs from deforming the membrane, the recruitment of proteins that induce a local spontaneous curvature C0 and the diffusion of proteins along the membrane. We propose a minimal mathematical model that accounts for these processes to describe the diffuso-kinetic dynamics of membrane budding processes. By deploying numerical simulations we map out the membrane shapes, the time for vesicle formation and the vesicle size as a function of the dimensionless kinetic recruitment parameter K1 and the proteins sensitivity to mean curvature. We derive a time for scission that follows a power law ∼K1-2/3, a consequence of the interplay between the spreading of proteins by diffusion and the kinetic-limited increase of the protein density on the membrane. We also find a scaling law for the vesicle size ∼1/([small sigma, Greek, macron]avC0), with [small sigma, Greek, macron]av the average protein density in the vesicle, which is confirmed in the numerical simulations. Rescaling all the membrane profiles at the time of vesicle formation highlights that the membrane adopts a self-similar shape.


Asunto(s)
Endocitosis , Proteínas , Membrana Celular , Difusión , Membranas
10.
Angew Chem Int Ed Engl ; 58(3): 907-911, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30372595

RESUMEN

Multivalency can facilitate complex formation when monovalent receptor-ligand interactions are weak. However, enhanced binding of two multivalent binding partners should be avoidable, for example when bivalent receptors ought to utilize multimolecular interactions to cross-link binding partners. We herein report the first systematic study to assess the criteria deciding whether a bivalent system engages in bivalency-enhanced interactions or cross-linking. We used DNA-instructed self-assembly to arrange the cucurbit[7]uril-adamantane host-guest system in 70-360 Šdistance. Measurements and statistical mechanics analyses revealed that the affinity gain is controlled by 1) the distance between recognition modules, 2) the scaffold flexibility, and, importantly, 3) the strength of the monovalent interaction. We show that the bivalency effect can extend beyond 150 Šand discuss how, on the contrary, weak monovalent interactions reduce the concentration threshold for cross-linking. The findings are of interest for inhibitor design.


Asunto(s)
Adamantano/química , Hidrocarburos Aromáticos con Puentes/química , ADN/química , Imidazoles/química , Reactivos de Enlaces Cruzados/química , Dimerización
11.
Chemistry ; 24(72): 19373-19385, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30295350

RESUMEN

Herein, the chemical synthesis and binding analysis of functionalizable rigid and flexible core trivalent sialosides bearing oligoethylene glycol (OEG) spacers interacting with spike proteins of influenza A virus (IAV) X31 is described. Although the flexible Tris-based trivalent sialosides achieved micromolar binding constants, a trivalent binder based on a rigid adamantane core dominated flexible tripodal compounds with micromolar binding and hemagglutination inhibition constants. Simulation studies indicated increased conformational penalties for long OEG spacers. Using a systematic approach with molecular modeling and simulations as well as biophysical analysis, these findings emphasize on the importance of the scaffold rigidity and the challenges associated with the spacer length optimization.


Asunto(s)
Virus de la Influenza A/efectos de los fármacos , Ácidos Siálicos/química , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Unión Proteica , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Relación Estructura-Actividad
12.
J Am Chem Soc ; 139(45): 16389-16397, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29052990

RESUMEN

Attachment of the Influenza A virus onto host cells involves multivalent interactions between virus surface hemagglutinin (HA) and sialoside-containing glyco ligands. Despite the development of extremely powerful multivalent binders of the Influenza virus and other viruses, comparably little is known about the optimal spacing of HA ligands, which ought to bridge binding sites within or across the trimeric HA molecules. To explore the criteria for ligand economical high affinity binding, we systematically probed distance-affinity relationships by means of two differently behaving scaffold types based on (i) flexible polyethylene glycol (PEG) conjugates and (ii) rigid self-assembled DNA·PNA complexes. The bivalent scaffolds presented two sialyl-LacNAc ligands in 23-101 Å distance. A combined analysis of binding by means of microscale thermophoresis measurements and statistical mechanics models exposed the inherent limitations of PEG-based spacers. Given the distance requirements of HA, the flexibility of PEG scaffolds is too high to raise the effective concentration of glyco ligands above a value that allows interactions with the low affinity binding site. By contrast, spatial screening with less flexible, self-assembled peptide nucleic acid (PNA)·DNA complexes uncovered a well-defined and, surprisingly, bimodal distance-affinity relationship for interactions of the Influenza A virus HA with bivalent displays of the natural sialyl-LacNAc ligand. Optimal constructs conferred 103-fold binding enhancements with only two ligands. We discuss the existence of secondary binding sites and shine light on the preference for intramolecular rather than intermolecular recognition of HA trimers on the virus surface.


Asunto(s)
ADN/química , Hemaglutininas/química , Virus de la Influenza A/química , Polietilenglicoles/química , Trisacáridos/química , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular
13.
J Am Chem Soc ; 137(7): 2572-9, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25623606

RESUMEN

Competitive binding inhibitors based on multivalent nanoparticles have shown great potential for preventing virus infections. However, general design principles of highly efficient inhibitors are lacking as the quantitative impact of factors such as virus concentration, inhibitor size, steric shielding, or multivalency effects in the inhibition process is not known. Based on two complementary experimental inhibition assays we determined size-dependent steric shielding and multivalency effects. This allowed us to adapt the Cheng-Prusoff equation for its application to multivalent systems. Our results show that the particle and volume normalized IC50 value of an inhibitor at very low virus concentration predominantly depends on its multivalent association constant, which itself exponentially increases with the inhibitor/virus contact area and ligand density. Compared to multivalency effects, the contribution of steric shielding to the IC50 values is only minor, and its impact is only noticeable if the multivalent dissociation constant is far below the virus concentration, which means if all inhibitors are bound to the virus. The dependence of the predominant effect, either steric shielding or multivalency, on the virus concentration has significant implications on the in vitro testing of competitive binding inhibitors and determines optimal inhibitor diameters for the efficient inhibition of viruses.


Asunto(s)
Antivirales/química , Antivirales/metabolismo , Unión Competitiva , Diseño de Fármacos , Antivirales/farmacología , Concentración 50 Inhibidora , Ligandos
14.
Beilstein J Org Chem ; 11: 804-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124882

RESUMEN

We present a quantitative model for the binding of divalent ligand-receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

15.
J Am Chem Soc ; 136(2): 688-97, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24328353

RESUMEN

We use a combined experimental/theoretical approach to determine the intrinsic monomeric desorption rate k0 of polytyrosine and polylysine homopeptides from flat surfaces. To this end, single polypeptide molecules are covalently attached to an AFM cantilever tip and desorbed from hydrophobic self-assembled monolayers in two complementary experimental protocols. In the constant-pulling-velocity protocol, the cantilever is moved at finite velocity away from the surface and the distance at which the constant plateau force regime ends and the polymer detaches is recorded. In the waiting-time protocol, the cantilever is held at a fixed distance above the surface and the time until the polymer detaches is recorded. The desorption plateau force is varied between 10 and 90 pN, by systematically changing the aqueous solvent quality via the addition of ethanol or salt. A simultaneous fit of the experimental data from both protocols with simple two-state kinetic polymer theory allows to unambiguously disentangle and determine the model parameters corresponding to polymer contour length L, Kuhn length a, adsorption free energy λ, and intrinsic monomeric desorption rate k0. Crucial to our analysis is that a statistically significant number of single-polymer desorption experiments are done with one and the same single polymer molecule for different solvent qualities. The surprisingly low value of about k0 ≈ 10(5) Hz points to significant cooperativity in the desorption process of single polymers.


Asunto(s)
Péptidos/química , Cinética , Microscopía de Fuerza Atómica , Propiedades de Superficie
16.
Phys Rev E ; 109(4-1): 044403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755805

RESUMEN

Membrane tubes are essential structural features in cells that facilitate biomaterial transport and inter- and intracellular signaling. The shape of these tubes can be regulated by the proteins that surround and adhere to them. We study the stability of a biomembrane tube coated with proteins by combining linear stability analysis, out-of-equilibrium hydrodynamic calculations, and numerical solutions of a Helfrich-like membrane model. Our analysis demonstrates that both long- and short-wavelength perturbations can destabilize the tubes. Numerical simulations confirm the derived linear stability criteria and yield the nonlinearly perturbed vesicle shapes. Our study highlights the interplay between membrane shape and protein density, where the shape instability concurs with a redistribution of proteins into a banded pattern.


Asunto(s)
Membrana Celular , Modelos Biológicos , Membrana Celular/metabolismo , Membrana Celular/química , Hidrodinámica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química
17.
J Am Chem Soc ; 134(48): 19628-38, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23101566

RESUMEN

The force-induced desorption of single peptide chains from mixed OH/CH(3)-terminated self-assembled monolayers is studied in closely matched molecular dynamics simulations and atomic force microscopy experiments with the goal to gain microscopic understanding of the transition between peptide adsorption and adsorption resistance as the surface contact angle is varied. In both simulations and experiments, the surfaces become adsorption resistant against hydrophilic as well as hydrophobic peptides when their contact angle decreases below θ ≈ 50°-60°, thus confirming the so-called Berg limit established in the context of protein and cell adsorption. Entropy/enthalpy decomposition of the simulation results reveals that the key discriminator between the adsorption of different residues on a hydrophobic monolayer is of entropic nature and thus is suggested to be linked to the hydrophobic effect. By pushing a polyalanine peptide onto a polar surface, simulations reveal that the peptide adsorption resistance is caused by the strongly bound water hydration layer and characterized by the simultaneous gain of both total entropy in the system and total number of hydrogen bonds between water, peptide, and surface. This mechanistic insight into peptide adsorption resistance might help to refine design principles for anti-fouling surfaces.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Agua/química
18.
Chemphyschem ; 13(4): 982-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22290722

RESUMEN

The hydrophobic attraction (HA) is believed to be one of the main driving forces for protein folding. Understanding its temperature dependence promises a deeper understanding of protein folding. Herein, we present an approach to investigate the HA with a combined experimental and simulation approach, which is complementary to previous studies on the temperature dependence of the solvation of small hydrophobic spherical particles. We determine the temperature dependence of the free-energy change and detachment length upon desorption of single polypeptides from hydrophobic substrates in aqueous environment. Both the atomic force microscopy (AFM) based experiments and the molecular dynamics (MD) simulations show only a weak dependence of the free energy change on temperature. In fact, depending on the substrate, we find a maximum or a minimum in the temperature-dependent free energy change, meaning that the entropy increases or decreases with temperature for different substrates. These observations are in contrast to the solvation of small hydrophobic particles and can be rationalized by a compensation mechanism between the various contributions to the desorption force. On the one hand this is reminiscent of the protein folding process, where large entropic and enthalpic contributions compensate each other to result in a small free energy difference between the folded and unfolded state. On the other hand, the protein folding process shows much stronger temperature dependence, pointing to a fundamental difference between protein folding and adsorption. Nevertheless such temperature dependent single molecule desorption studies open large possibilities to study equilibrium and non-equilibrium processes dominated by the hydrophobic attraction.


Asunto(s)
Péptidos/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Pliegue de Proteína , Desplegamiento Proteico , Temperatura , Termodinámica
19.
Elife ; 112022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259931

RESUMEN

Alphaviruses are mosquito-borne viruses that cause serious disease in humans and other mammals. Along with its mosquito vector, the Alphavirus chikungunya virus (CHIKV) has spread explosively in the last 20 years, and there is no approved treatment for chikungunya fever. On the plasma membrane of the infected cell, CHIKV generates dedicated organelles for viral RNA replication, so-called spherules. Whereas structures exist for several viral proteins that make up the spherule, the architecture of the full organelle is unknown. Here, we use cryo-electron tomography to image CHIKV spherules in their cellular context. This reveals that the viral protein nsP1 serves as a base for the assembly of a larger protein complex at the neck of the membrane bud. Biochemical assays show that the viral helicase-protease nsP2, while having no membrane affinity on its own, is recruited to membranes by nsP1. The tomograms further reveal that full-sized spherules contain a single copy of the viral genome in double-stranded form. Finally, we present a mathematical model that explains the membrane remodeling of the spherule in terms of the pressure exerted on the membrane by the polymerizing RNA, which provides a good agreement with the experimental data. The energy released by RNA polymerization is found to be sufficient to remodel the membrane to the characteristic spherule shape.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Animales , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , ARN Viral/metabolismo , Orgánulos/metabolismo , Mamíferos/genética
20.
Nat Nanotechnol ; 15(5): 373-379, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32231271

RESUMEN

Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1-4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle7.


Asunto(s)
Allolevivirus/metabolismo , Cápside/metabolismo , Virus de la Influenza A/fisiología , Gripe Humana/prevención & control , Nanopartículas/uso terapéutico , Internalización del Virus , Células A549 , Animales , Sitios de Unión , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Gripe Humana/metabolismo , Gripe Humana/virología , Ligandos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Nanopartículas/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA