Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biophys J ; 119(7): 1275-1280, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32910900

RESUMEN

Carbonic anhydrase (CA) is a thoroughly studied enzyme. Its primary role is the rapid interconversion of carbon dioxide and bicarbonate in the cells, where carbon dioxide is produced, and in the lungs, where it is released from the blood. At the same time, it regulates pH homeostasis. The inhibitory function of sulfonamides on CA was discovered some 80 years ago. There are numerous physiological-therapeutic conditions in which inhibitors of carbonic anhydrase have a positive effect, such as glaucoma, or act as diuretics. With the realization that several isoenzymes of carbonic anhydrase are associated with the development of several types of cancer, such as brain and breast cancer, the development of inhibitor drugs specific to those enzyme forms has exploded. We would like to highlight the breadth of research on the enzyme as well as draw the attention to some problems in recent published work on inhibitor discovery.


Asunto(s)
Anhidrasas Carbónicas , Inhibidores de Anhidrasa Carbónica/farmacología , Isoenzimas , Sulfonamidas
2.
Q Rev Biophys ; 51: e12, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912488

RESUMEN

The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas Activadoras de GTPasa/química , Modelos Moleculares , Conformación Proteica , Proteínas Ribosómicas/química
4.
Crystallogr Rev ; 21(1-2): 122-153, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25983389

RESUMEN

Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future.

5.
IUCrJ ; 7(Pt 2): 144-145, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148841

RESUMEN

The enzyme carbonic anhydrase binds its zinc ion by three histidine residues in a similar manner to the way copper is bound to nitrite reductase. This remote similarity has now been shown to be real [Andring et al. (2020). IUCrJ, 7, 287-293]. A carbonic anhydrase with two bound copper ions is also a nitrite reductase.

6.
J Mol Biol ; 365(2): 468-79, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17070545

RESUMEN

Efficient protein synthesis in bacteria requires initiation factor 2 (IF2), elongation factors Tu (EF-Tu) and G (EF-G), and release factor 3 (RF3), each of which catalyzes a major step of translation in a GTP-dependent fashion. Previous reports have suggested that recruitment of factors to the ribosome and subsequent GTP hydrolysis involve the dimeric protein L12, which forms a flexible "stalk" on the ribosome. Using heteronuclear NMR spectroscopy we demonstrate that L12 binds directly to the factors IF2, EF-Tu, EF-G, and RF3 from Escherichia coli, and map the region of L12 involved in these interactions. Factor-dependent chemical shift changes show that all four factors bind to the same region of the C-terminal domain of L12. This region includes three strictly conserved residues, K70, L80, and E82, and a set of highly conserved residues, including V66, A67, V68 and G79. Upon factor binding, all NMR signals from the C-terminal domain become broadened beyond detection, while those from the N-terminal domain are virtually unaffected, implying that the C-terminal domain binds to the factor, while the N-terminal domain dimer retains its rotational freedom mediated by the flexible hinge between the two domains. Factor-dependent variations in linewidths further reveal that L12 binds to each factor with a dissociation constant in the millimolar range in solution. These results indicate that the L12-factor complexes will be highly populated on the ribosome, because of the high local concentration of ribosome-bound factor with respect to L12.


Asunto(s)
Proteínas de Escherichia coli/genética , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Secuencia Conservada , Proteínas de Escherichia coli/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Albúmina Sérica/química , Relación Estructura-Actividad
7.
IUCrJ ; 5(Pt 1): 4-5, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29354265

RESUMEN

Investigations of the rapid enzyme carbonic anhydrase have now been extended by crystallographic analysis at high CO2 pressures to examine the movements of water molecules in different steps of the catalysis. The rate of catalysis seems well explained by the assembled observations.

8.
Artículo en Inglés | MEDLINE | ID: mdl-28138071

RESUMEN

Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg2+ ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account.This article is part of the themed issue 'Perspectives on the ribosome'.


Asunto(s)
Codón/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 16S/genética , ARN de Transferencia/química , Ribosomas/química , Bacterias/química , Bacterias/genética , Eucariontes/química , Eucariontes/genética , ARN Ribosómico 16S/química
9.
J Mol Biol ; 348(4): 939-49, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15843024

RESUMEN

Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Thermus thermophilus/química , Cristalografía por Rayos X , Ácido Fusídico/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mutación/genética , Factor G de Elongación Peptídica/genética , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Thermus thermophilus/genética
10.
Sci Rep ; 6: 30170, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27460773

RESUMEN

In this work, we developed a method to systematically study the sequence preference of mRNAs during translation initiation. Traditionally, the dynamic process of translation initiation has been studied at the single molecule level with limited sequencing possibility. Using deep sequencing techniques, we identified the sequence preference at different stages of the initiation complexes. Our results provide a comprehensive and dynamic view of the initiation elements in the translation initiation region (TIR), including the S1 binding sequence, the Shine-Dalgarno (SD)/anti-SD interaction and the second codon, at the equilibrium of different initiation complexes. Moreover, our experiments reveal the conformational changes and regional dynamics throughout the dynamic process of mRNA recruitment.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Secuencia de Bases , Codón Iniciador/genética , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
FEBS Lett ; 579(20): 4492-7, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16083884

RESUMEN

Elongation factor G (EF-G) is a G protein factor that catalyzes the translocation step in protein synthesis on the ribosome. Its GTP conformation in the absence of the ribosome is currently unknown. We present the structure of a mutant EF-G (T84A) in complex with the non-hydrolysable GTP analogue GDPNP. The crystal structure provides a first insight into conformational changes induced in EF-G by GTP. Comparison of this structure with that of EF-G in complex with GDP suggests that the GTP and GDP conformations in solution are very similar and that the major contribution to the active GTPase conformation, which is quite different, therefore comes from its interaction with the ribosome.


Asunto(s)
Guanosina Trifosfato/análogos & derivados , Factor G de Elongación Peptídica/química , Thermus thermophilus/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Guanosina Trifosfato/química , Datos de Secuencia Molecular , Mutación , Factor G de Elongación Peptídica/genética , Estructura Terciaria de Proteína
12.
J Mol Biol ; 322(3): 635-44, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12225755

RESUMEN

The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.


Asunto(s)
Eritromicina/farmacología , Proteínas de Escherichia coli , Escherichia coli/genética , Mutación , ARN Bacteriano/química , ARN Ribosómico 23S/química , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas , Cristalografía por Rayos X , Farmacorresistencia Microbiana/genética , Escherichia coli/efectos de los fármacos , Conformación de Ácido Nucleico , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Thermus thermophilus/química
14.
Curr Protein Pept Sci ; 3(1): 133-41, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12370017

RESUMEN

tRNA is the adaptor in the translation process. The ribosome has three sites for tRNA, the A-, P-, and E-sites. The tRNAs bridge between the ribosomal subunits with the decoding site and the mRNA on the small or 30S subunit and the peptidyl transfer site on the large or 50S subunit. The possibility that translation release factors could mimic tRNA has been discussed for a long time, since their function is very similar to that of tRNA. They identify stop codons of the mRNA presented in the decoding site and hydrolyse the nascent peptide from the peptidyl tRNA in the peptidyl transfer site. The structures of eubacterial release factors are not yet known, and the first example of tRNA mimicry was discovered when elongation factor G (EF-G) was found to have a closely similar shape to a complex of elongation factor Tu (EF-Tu) with aminoacyl-tRNA. An even closer imitation of the tRNA shape is seen in ribosome recycling factor (RRF). The number of proteins mimicking tRNA is rapidly increasing. This primarily concerns translation factors. It is now evident that in some sense they are either tRNA mimics, GTPases or possibly both.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , ARN de Transferencia/metabolismo , Imitación Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Estructura Terciaria de Proteína , ARN de Transferencia/química
15.
Curr Opin Struct Biol ; 24: 165-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24524803

RESUMEN

A system for naming ribosomal proteins is described that the authors intend to use in the future. They urge others to adopt it. The objective is to eliminate the confusion caused by the assignment of identical names to ribosomal proteins from different species that are unrelated in structure and function. In the system proposed here, homologous ribosomal proteins are assigned the same name, regardless of species. It is designed so that new names are similar enough to old names to be easily recognized, but are written in a format that unambiguously identifies them as 'new system' names.


Asunto(s)
Proteínas Ribosómicas/clasificación , Terminología como Asunto , Animales , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Humanos , Proteínas Ribosómicas/química , Subunidades Ribosómicas/química , Levaduras/química
16.
Acta Crystallogr A ; 69(Pt 1): 10-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23250055

RESUMEN

The Nobel Committees have to follow the nominations submitted for a specific year. During the early phase of X-ray crystallography, a limited number of scientists were active. In 1914 Max von Laue and William Henry Bragg were both nominated and could have been awarded a joint Nobel Prize. However, a member of the Nobel Committee for Physics, Allvar Gullstrand, was well aware of the activities in the field and strongly recommended that only von Laue should receive the prize since a main contributor, William Laurence Bragg, was not nominated. Next year, when the First World War had started, there were few nominations, but now both Braggs, father and son, were nominated. Gullstrand was very pleased and recommended them both for the 1915 Nobel Prize in Physics. The rest of the committee agreed and this then became the decision of the Royal Academy for Sciences, Stockholm.


Asunto(s)
Cristalografía por Rayos X/historia , Premio Nobel , Cristalografía por Rayos X/métodos , Historia del Siglo XX , Humanos , Primera Guerra Mundial
17.
Nat Struct Mol Biol ; 20(10): 1141-2, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24096398

RESUMEN

Translation initiation in eukaryotes is a complex and highly regulated process during which several initiation factors cooperate to recruit an initiator tRNA to the small ribosomal subunit, where the mRNA is scanned for an AUG start codon. Two recent reports provide new structural insights into this process and reveal key functions of initiation factors 1 (eIF1) and 1A (eIF1A) in start-codon selection in atomic detail.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Modelos Moleculares , Complejos Multiproteicos/química , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Tetrahymena thermophila/química , Animales , Humanos
18.
Cell Cycle ; 15(12): 1529-30, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27101224
19.
Science ; 333(6038): 37; author reply 37, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21719661

RESUMEN

Voorhees et al. (Reports, 5 November 2010, p. 835) determined the structure of elongation factor Tu (EF-Tu) and aminoacyl-transfer RNA bound to the ribosome with a guanosine triphosphate (GTP) analog. However, their identification of histidine-84 of EF-Tu as deprotonating the catalytic water molecule is problematic in relation to their atomic structure; the terminal phosphate of GTP is more likely to be the proper proton acceptor.


Asunto(s)
Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/química , Histidina/química , Histidina/metabolismo , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Protones , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA