Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 31(6): 1106-1119, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33832989

RESUMEN

Steps of mRNA maturation are important gene regulatory events that occur in distinct cellular locations. However, transcriptomic analyses often lose information on the subcellular distribution of processed and unprocessed transcripts. We generated extensive RNA-seq data sets to track mRNA maturation across subcellular locations in mouse embryonic stem cells, neuronal progenitor cells, and postmitotic neurons. We find disparate patterns of RNA enrichment between the cytoplasmic, nucleoplasmic, and chromatin fractions, with some genes maintaining more polyadenylated RNA in chromatin than in the cytoplasm. We bioinformatically defined four regulatory groups for intron retention, including complete cotranscriptional splicing, complete intron retention in the cytoplasmic RNA, and two intron groups present in nuclear and chromatin transcripts but fully excised in cytoplasm. We found that introns switch their regulatory group between cell types, including neuronally excised introns repressed by polypyrimidine track binding protein 1 (PTBP1). Transcripts for the neuronal gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1) are highly expressed in mESCs but are absent from the cytoplasm. Instead, incompletely spliced Gabbr1 RNA remains sequestered on chromatin, where it is bound by PTBP1, similar to certain long noncoding RNAs. Upon neuronal differentiation, Gabbr1 RNA becomes fully processed and exported for translation. Thus, splicing repression and chromatin anchoring of RNA combine to allow posttranscriptional regulation of Gabbr1 over development. For this and other genes, polyadenylated RNA abundance does not indicate functional gene expression. Our data sets provide a rich resource for analyzing many other aspects of mRNA maturation in subcellular locations and across development.


Asunto(s)
Precursores del ARN , Empalme del ARN , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genes del Desarrollo , Intrones/genética , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo
2.
J Virol ; 88(7): 3815-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24453362

RESUMEN

UNLABELLED: pU(L)34 and pU(L)31 of herpes simplex virus (HSV) comprise the nuclear egress complex (NEC) and are required for budding at the inner nuclear membrane. pU(L)31 also associates with capsids, suggesting it bridges the capsid and pU(L)34 in the nuclear membrane to initiate budding. Previous studies showed that capsid association of pU(L)31 was precluded in the absence of the C terminus of pU(L)25, which along with pU(L)17 comprises the capsid vertex-specific complex, or CVSC. The present studies show that the final 20 amino acids of pU(L)25 are required for pU(L)31 capsid association. Unexpectedly, in the complete absence of pU(L)25, or when pU(L)25 capsid binding was precluded by deletion of its first 50 amino acids, pU(L)31 still associated with capsids. Under these conditions, pU(L)31 was shown to coimmunoprecipitate weakly with pU(L)17. Based on these data, we hypothesize that the final 20 amino acids of pU(L)25 are required for pU(L)31 to associate with capsids. In the absence of pU(L)25 from the capsid, regions of capsid-associated pU(L)17 are bound by pU(L)31. Immunogold electron microscopy revealed that pU(L)31 could associate with multiple sites on a single capsid in the nucleus of infected cells. Electron tomography revealed that immunogold particles specific to pU(L)31 protein bind to densities at the vertices of the capsid, a location consistent with that of the CVSC. These data suggest that pU(L)31 loads onto CVSCs in the nucleus to eventually bind pU(L)34 located within the nuclear membrane to initiate capsid budding. IMPORTANCE: This study is important because it localizes pU(L)1, a component previously known to be required for HSV capsids to bud through the inner nuclear membrane, to the vertex-specific complex of HSV capsids, which comprises the unique long region 25 (U(L)25) and U(L)17 gene products. It also shows this interaction is dependent on the C terminus of U(L)25. This information is vital for understanding how capsids bud through the inner nuclear membrane.


Asunto(s)
Cápside/química , Proteínas Nucleares/análisis , Simplexvirus/química , Proteínas Virales/análisis , Proteínas Virales/metabolismo , Microscopía Inmunoelectrónica , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA