Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(22): 5911-5936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34996316

RESUMEN

Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.


Asunto(s)
Diabetes Mellitus , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Neoplasias/prevención & control , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Diabetes Mellitus/tratamiento farmacológico
2.
Environ Toxicol ; 36(5): 914-925, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33382531

RESUMEN

6,8-Diprenylorobol is a natural compound mainly found in Glycyrrhiza uralensis fisch and Maclura tricuspidata, which has been used traditionally as food and medicine in Asia. So far, the antiproliferative effect of 6,8-diprenylorobol has not been studied yet in colon cancer. In this study, we aimed to evaluate the antiproliferative effects of 6,8-diprenylorobol in LoVo and HCT15, two kinds of human colon cancer cells. 6,8-Diprenylorobol inhibited the proliferation of LoVo and HCT15 cells in a dose- and time-dependent manner. A 40 µM of 6,8-diprenylorobol for 72 h reduced both of cell viability under 50%. After treatment of 6,8-diprenylorobol (40 and 60 µM) for 72 h, late apoptotic cell portion in LoVo and HCT15 cells were 24, 70% and 13, 90%, respectively, which was confirmed by checking DNA fragmentation in both cells. Mechanistically, 6,8-diprenylorobol activated p53 and its phosphorylated form (Ser15, Ser20, and Ser46) expression but suppressed Akt and mitogen-activated protein kinases (MAPKs) phosphorylation in LoVo and HCT15 cells. Interestingly, 6,8-diprenylorobol induced the generation of intracellular reactive oxygen species (ROS), which was attenuated with N-acetyl cysteine (NAC) treatment. Compared to the control, 60 µM of 6,8-diprenylorobol caused to increase ROS level to 210% in LoVo and HCT15, which was reduced into 161% and 124%, respectively with NAC. Furthermore, cell viability and apoptotic cell portion by 6,8-diprenylorobol was recovered by incubation with NAC. Taken together, these results indicate that 6,8-diprenylorobol has the potential antiproliferative effect against LoVo and HCT15 colon cancer cells through activation of p53 and generation of ROS.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/tratamiento farmacológico , Humanos , Especies Reactivas de Oxígeno/metabolismo
3.
Oxid Med Cell Longev ; 2022: 9139338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308176

RESUMEN

Acetylshikonin is a shikonin derivative originated from Lithospermum erythrorhizon roots that exhibits various biological activities, including granulation tissue formation, promotion of inflammatory effects, and inhibition of angiogenesis. The anticancer effect of acetylshikonin was also investigated in several cancer cells; however, the effect against renal cell carcinoma (RCC) have not yet been studied. In this study, we aimed to investigate the anticarcinogenic mechanism of acetylshikonin in A498 and ACHN, human RCC cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), cell counting, and colony forming assay showed that acetylshikonin induced cytotoxic and antiproliferative effects in a dose- and time-dependent manner. Cell cycle analysis and annexin V/propidium iodide (PI) double staining assay indicated the increase of subG1 phase and apoptotic rates. Also, DNA fragmentation was observed by using the TUNEL and comet assays. The intracellular ROS level in acetylshikonin-treated RCC was evaluated using DCF-DA. The ROS level was increased and cell viability was decreased in a dose- and time-dependent manner, while those were recovered when cotreated with NAC. Western blotting analysis showed that acetylshikonin treatment increased the expression of FOXO3, cleaved PARP, cleaved caspase-3, -6, -7, -8, -9, γH2AX, Bim, Bax, p21, and p27 while decreased the expressions of CYP2J2, peroxiredoxin, and thioredoxin-1, Bcl-2, and Bcl-xL. Simultaneously, nuclear translocation of FOXO3 and p27 was observed in cytoplasmic and nuclear fractionated western blot analysis. Acetylshikonin was formerly identified as a novel inhibitor of CYP2J2 protein in our previous study and it was evaluated that CYP2J2 was downregulated in acetylshikonin-treated RCC. CYP2J2 siRNA transfection augmented that apoptotic effect of acetylshikonin in A498 and ACHN via up-regulation of FOXO3 expression. In conclusion, we showed that the apoptotic potential of acetylshikonin against RCC is mediated via increase of intracellular ROS level, activation of FOXO3, and inhibition of CYP2J2 expressions. This study offers that acetylshikonin may be a considerable alternative therapeutic option for RCC treatment by targeting FOXO3 and CYP2J2.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Antraquinonas , Apoptosis , Citocromo P-450 CYP2J2 , Proteína Forkhead Box O3 , Humanos , Neoplasias Renales/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
4.
Hum Exp Toxicol ; 40(5): 812-825, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33118390

RESUMEN

This study was focused on investigating the anticancer potential of indole-3-carbinol (I3C) against lung cancer H1299 cells via an increase in ROS levels. To investigate the induction of growth arrest and/or cell death in H1299 cells, a cell cycle arrest assay, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) assay, and reactive oxygen species (ROS) detection assay were performed. Through the TUNEL assay, we detected I3C-induced DNA fragmentation. Fluorescence-activated cell sorting (FACS) analysis showed that I3C induced an increase in ROS levels and apoptotic rate in a dose- and time-dependent manner in H1299 cells. Western blotting demonstrated that activated forms of caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase (PARP) were increased in I3C-treated H1299 cells following treatment with I3C. Furthermore, protein expression levels of FOXO3, bim, bax, and phosphorylated ERK and JNK were increased, while those of pAkt, Bcl-xL, and Bcl-2 were decreased by I3C treatment of H1299 cells. To confirm the relationship between cell apoptosis and ROS generation, H1299 cells were treated with I3C simultaneously with N-acetylcysteine (NAC), and it was shown that ROS levels decreased and viability increased. Moreover, in western blot analysis, expression of anti-apoptotic proteins (thioredoxin1, peroxiredoxin-1, Bcl-2, and Bcl-xL) in I3C-treated cells was evidently downregulated and pro-apoptotic proteins (active ASK1 and cleaved PARP) were upregulated compared to cells co-treated with NAC. The study showed that I3C induced downregulation of ROS regulator proteins and elevation of ROS, thus activating apoptotic signaling cascades in human lung cancer H1299 cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral/efectos de los fármacos , Indoles/metabolismo , Indoles/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Humanos
5.
Oxid Med Cell Longev ; 2021: 6647107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953834

RESUMEN

Acetylshikonin, a naphthoquinone, is a pigment compound derived from Arnebia sp., which is known for its anti-inflammatory potential. However, its anticarcinogenic effect has not been well investigated. Thus, in this study, we focused on investigating its apoptotic effects against HCT-15 and LoVo cells, which are human colorectal cancer cells. MTT assay, cell counting assay, and colony formation assay have shown acetylshikonin treatment induced cytotoxic and antiproliferative effects against colorectal cancer cells in a dose- and time-dependent manner. DNA fragmentation was observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Also, the increase of subG1 phase in cell cycle arrest assay and early/late apoptotic rates in annexin V/propidium iodide (PI) double staining assay was observed, which indicates an apoptotic potential of acetylshikonin against colorectal cancer cells. 2',7'-Dichlorofluorescin diacetate (DCF-DA) staining was used to evaluate reactive oxygen species (ROS) generation in acetylshikonin-treated colorectal cancer cells. Fluorescence-activated cell sorting (FACS) analysis showed that acetylshikonin induced an increase in reactive oxygen species (ROS) levels and apoptotic rate in a dose- and time-dependent manner in HCT-15 and LoVo cells. In contrast, cotreatment with N-acetyl cysteine (NAC) has reduced ROS generation and antiproliferative effects in colorectal cancer cells. Western blotting analysis showed that acetylshikonin treatment induced increase of cleaved PARP, γH2AX, FOXO3, Bax, Bim, Bad, p21, p27, and active forms of caspase-3, caspase-7, caspase-9, caspase-6, and caspase-8 protein levels, while those of inactive forms were decreased. Also, the expressions of pAkt, Bcl-2, Bcl-xL, peroxiredoxin, and thioredoxin 1 were decreased. Furthermore, western blotting analysis of cytoplasmic and nuclear fractionated proteins showed that acetylshikonin treatment induced the nuclear translocation of FOXO3, which might result from DNA damage by the increased intracellular ROS level. This study represents apoptotic potential of acetylshikonin against colorectal cancer cells via translocation of FOXO3 to the nucleus and upregulation of ROS generation.


Asunto(s)
Antraquinonas/uso terapéutico , Puntos de Control del Ciclo Celular/genética , Neoplasias Colorrectales/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Proteína Forkhead Box O3/metabolismo , Antraquinonas/farmacología , Apoptosis , Proliferación Celular , Medicamentos Herbarios Chinos/farmacología , Humanos , Especies Reactivas de Oxígeno
6.
J Pers Med ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34683124

RESUMEN

Background: CRISPR/Cas9 system is a prokaryotic adaptive immune response system that uses noncoding RNAs to guide the Cas9 nuclease to induce site-specific DNA cleavage. Hepatocyte growth factor (HGF) is a well-known growth factor that plays a crucial role in cell growth and organ development. According to recent studies, it has been reported that HGF promoted growth of hepatocellular carcinoma (HCC) cells. Here, we investigated the apoptotic effects in HCC cells. Methods: Crispr-HGF plasmid was constructed using GeneArt CRISPR Nuclease Vector. pMex-HGF plasmid that targets HGF overexpressing gene were designed with pMex-neo plasmid. We performed real time-polymerase chain reaction to measure the expression of HGF mRNA. We performed cell counting assay and colony formation assay to evaluate cell proliferation. We also carried out migration assay and invasion assay to reveal the inhibitory effects of Crispr-HGF in HCC cells. Furthermore, we performed cell cycle analysis to detect transfection of Crispr-HGF induced cell cycle arrest. Collectively, we performed annexin V/PI staining assay and Western blot assay. Results: In Crispr-HGF-transfected group, the mRNA expression levels of HGF were markedly downregulated compared to pMex-HGF-transfected group. Moreover, Crispr-HGF inhibited cell viability in HCC cells. We detected that wound area and invaded cells were suppressed in Crispr-HGF-transfected cells. The results showed that transfection of Crispr-HGF induced cell cycle arrest and apoptosis in HCC cells. Expression of the phosphorylation of mitogen activated protein kinases and c-Met protein was regulated in Crispr-HGF-transfected group. Interestingly, we found that the expression of HGF protein in conditioned media significantly decreased in Crispr-HGF-transfected group. Conclusions: Taken together, we found that inhibition of HGF through transfection of Crispr-HGF suppressed cell proliferation and induced apoptotic effects in HCC Huh7 and Hep3B cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA