Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 96(13): e0045522, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35727030

RESUMEN

A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/síntesis química , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
J Gen Virol ; 98(2): 155-165, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27983474

RESUMEN

Human infections with A/Jiangxi-Donghu/346/2013 (H10N8) virus have raised concerns about its pandemic potential. In order to develop a vaccine against this virus, the immunogenicity of its haemagglutinin protein was evaluated in mice. Using both whole-virion and recombinant subunit protein vaccines, we showed that two doses of either vaccine elicited neutralizing antibody responses. The protective efficacy of the vaccine-induced responses was assessed using a reverse-genetics-derived H10 reassortant virus on the A/Puerto Rico/8/34 (H1N1) backbone. The reassortant virus replicated efficiently in the respiratory tract of unvaccinated mice whereas vaccinated mice were completely protected from challenge, with no detectable viral load in the lower respiratory tract. Finally, the serum neutralizing antibody responses elicited by the H10 vaccines also exhibited cross-neutralizing activity against three heterologous wild-type H10 viruses. Collectively, these findings demonstrate that different vaccine platforms presenting the H10 haemagglutinin protein induce protective immunity.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunogenicidad Vacunal , Subtipo H10N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/sangre , Animales , Reacciones Cruzadas , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H10N8 del Virus de la Influenza A/genética , Subtipo H10N8 del Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Gripe Humana/sangre , Gripe Humana/inmunología , Gripe Humana/prevención & control , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/genética , Virus Reordenados/inmunología , Sistema Respiratorio/virología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Replicación Viral
3.
PLoS One ; 16(6): e0253487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161386

RESUMEN

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , COVID-19/terapia , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/metabolismo , COVID-19/inmunología , COVID-19/virología , Quimiocinas/sangre , Quimiocinas/genética , Chlorocebus aethiops , Convalecencia , Cricetinae , Citocinas/sangre , Citocinas/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Macaca mulatta , Masculino , Ratones Transgénicos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Carga Viral
4.
Vaccine ; 32(42): 5375-8, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25130540

RESUMEN

A prototype H7 influenza vaccine constructed based on the H7N7 outbreak in 2003 was tested for the protective efficacy against the novel H7N9 virus in a lethal murine challenge model. Serum samples from vaccinated mice showed significant neutralizing activity against the H7N9 virus and the mice were completely protected with no significant weight loss. The results have direct implications on how to overcome potential vaccine shortage and identify donors for immune sera for passive immunization.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Subtipo H7N7 del Virus de la Influenza A , Ratones Endogámicos BALB C , Pruebas de Neutralización , Virus Reordenados/inmunología , Vacunas de Productos Inactivados/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA