RESUMEN
Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis.
Asunto(s)
Reprogramación Celular/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Huésped Inmunocomprometido , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Sepsis/inmunología , Inmunidad Adaptativa , Convalecencia , Citocinas/genética , Citocinas/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/genética , Monocitos/inmunología , Monocitos/patología , Fagocitosis , Sepsis/genética , Sepsis/patología , Transducción de Señal , Transcriptoma/inmunologíaRESUMEN
Monocytes and macrophages are major components of the tumor microenvironment, but their contributions to human cancer are poorly understood. We used molecular profiling combined with functional assays to investigate the role of these cells in human renal cell carcinoma (RCC). Blood monocytes from RCC patients displayed a tumor-promoting transcriptional profile that supported functions like angiogenesis and invasion. Induction of this protumor phenotype required an interleukin-1 receptor (IL-1R)-dependent mechanism. Indeed, targeting of IL-1-IL-1R axis in a human RCC xenograft model abrogated the protumor phenotype of tumor-associated macrophages (TAMs) and reduced tumor growth in vivo. Supporting this, meta-analysis of gene expression from human RCC tumors showed IL1B expression to correlate with myelomonocytic markers, protumor genes, and tumor staging. Analyzing RCC patient tumors confirmed the protumor phenotype of TAMs. These data provide direct evidence for a tumor-promoting role of monocytes and macrophages in human cancer and indicate IL-1-IL-1R as a possible therapeutic target.
Asunto(s)
Carcinoma de Células Renales/inmunología , Interleucina-1beta/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptores de Interleucina-1/inmunología , Animales , Proliferación Celular/genética , Citocinas/biosíntesis , Citocinas/inmunología , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Ratones , Ratones Noqueados , Ratones SCID , Factor 88 de Diferenciación Mieloide , Trasplante de Neoplasias , Neovascularización Patológica , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/genética , Factor de Transcripción ReIA/genética , Trasplante Heterólogo , Células Tumorales CultivadasRESUMEN
Blood monocytes recognize Gram-negative bacteria through the TLR4, which signal via MyD88- and TRIF-dependent pathway to trigger an immune-inflammatory response. However, a dysregulated inflammatory response by these cells often leads to severe pathologies such as sepsis. We investigated the role of CD16 in the regulation of human monocyte response to Gram-negative endotoxin and sepsis. Blood monocytes from sepsis patients demonstrated an upregulation of several TRIF-dependent genes as well as a selective expansion of CD16-expressing (CD16(+)) monocytes. Gene expression and biochemical studies revealed CD16 to regulate the TRIF-dependent TLR4 pathway in monocytes by activating Syk, IFN regulatory factor 3, and STAT1, which resulted in enhanced expression of IFNB, CCL5, and CXCL10. CD16 also upregulated the expression of IL-1R-associated kinase M and IL-1 receptor antagonist, which are negative regulators of the MyD88-dependent pathway. CD16 overexpression or small interfering RNA knockdown in monocytes confirmed the above findings. Interestingly, these results were mirrored in the CD16(+) monocyte subset isolated from sepsis patients, providing an in vivo confirmation to our findings. Collectively, the results from the current study demonstrate CD16 as a key regulator of the TRIF-dependent TLR4 pathway in human monocytes and their CD16-expressing subset, with implications in sepsis.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Monocitos/metabolismo , Receptores de IgG/genética , Sepsis/inmunología , Inmunidad Adaptativa , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Adulto , Animales , Endotoxinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferones/genética , Interferones/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Cultivo Primario de Células , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/inmunología , ARN Interferente Pequeño/genética , Receptores de IgG/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Sepsis/genética , Sepsis/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Quinasa Syk , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , TransfecciónRESUMEN
It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.
Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Monocitos/citología , Receptores CXCR4/metabolismo , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ritmo Circadiano/genética , Endotoxinas/toxicidad , Femenino , Perfilación de la Expresión Génica , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismoRESUMEN
Febrile temperatures can induce stress responses which protect cells from damage and can reduce inflammation during infections and sepsis. However, the mechanisms behind the protective functions of heat in response to the bacterial endotoxin LPS are unclear. We have recently shown that Annexin-1 (ANXA1)-deficient macrophages exhibited higher TNFα levels after LPS stimulation. Moreover, we have previously reported that ANXA1 can function as a stress protein. Therefore in this study, we determined if ANXA1 is involved in the protective effects of heat on cytokine levels in macrophages after heat and LPS. Exposure of macrophages to 42 °C for 1 h prior to LPS results in an inhibition of TNFα production, which was not evident in ANXA1(-/-) macrophages. We show that this regulation involves primarily MYD88-independent pathways. ANXA1 regulates TNFα mRNA stability after heat and LPS, and this is dependent on endogenous ANXA1 expression and not exogenously secreted factors. Further mechanistic studies revealed the possible involvement of the heat shock protein HSP70 and JNK in the heat and inflammatory stress response regulated by ANXA1. This study shows that ANXA1, an immunomodulatory protein, is critical in the heat stress response induced after heat and endotoxin stimulation.
Asunto(s)
Anexina A1/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/análisis , Animales , Anexina A1/deficiencia , Células de la Médula Ósea/citología , Células Cultivadas , Citocinas/análisis , Ensayo de Inmunoadsorción Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Estabilidad del ARN/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Temperatura , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
The role of myelomonocytic cells like monocytes and macrophages as first line of host defense is well established. Recent understanding of these cells using systems biology, transgenesis and in disease models has brought them to a center stage in orchestrating crucial functions during homeostasis and pathogenesis. Thus, understanding the functional diversity of these cells in health and disease as well as the mechanisms that control these events would be crucial for designing strategies for regulating disease and reinstate homeostasis.