Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 34(7): 2503-13, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523541

RESUMEN

IL-6 is implicated in the pathogenesis of various neuroinflammatory and neurodegenerative disorders of the CNS. IL-6 signals via binding to either the membrane bound IL-6Rα (classic signaling) or soluble (s)IL-6Ra (trans-signaling) that then form a complex with gp130 to activate the JAK/STAT signaling pathway. The importance of classic versus trans-signaling in mediating IL-6 actions in the living CNS is relatively unknown and was the focus of this investigation. Bigenic mice (termed GFAP-IL6/sgp130 mice) were generated with CNS-restricted, astrocyte-targeted production of IL-6 and coproduction of the specific inhibitor of IL-6 trans-signaling, human sgp130-Fc. Transgene-encoded IL-6 mRNA levels were similar in the brain of GFAP-IL6 and GFAP-IL6/sgp130 mice. However, GFAP-IL6/sgp130 mice had decreased pY(705)-STAT3 in the brain due to a reduction in the total number of pY(705)-STAT3-positive cells and a marked loss of pY(705)-STAT3 in specific cell types. Blockade of trans-signaling in the brain of the GFAP-IL6 mice significantly attenuated Serpina3n but not SOCS3 gene expression, whereas vascular changes including angiogenesis and blood-brain barrier leakage as well as gliosis were also reduced significantly. Hippocampal neurogenesis which was impaired in GFAP-IL6 mice was rescued in young GFAP-IL6 mice with cerebral sgp130 production. Finally, degenerative changes in the cerebellum characteristic of GFAP-IL6 mice were absent in GFAP-IL6/sgp130 mice. The findings indicate that in the CNS: (1) sgp130 is able to block IL-6 trans-signaling, (2) trans-signaling is important for IL-6 cellular communication with selective cellular and molecular targets, and (3) blocking of trans-signaling alleviates many of the detrimental effects of IL-6.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Transgénicos
2.
J Virol ; 88(13): 7578-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760883

RESUMEN

UNLABELLED: Following systemic infection with lymphocytic choriomeningitis virus (LCMV), STAT1 knockout (KO) mice but not wild-type, STAT2 KO, IRF9 KO, or IFNAR KO mice develop lethal disease perpetrated by CD4(+) T cells. IRF7 is a key transcriptional activator of type I IFN (IFN-I) during LCMV infection. Here, the role of IRF7 in the lethal host response to LCMV infection in STAT1 KO mice was examined. In contrast to STAT1 KO mice, STAT1/IRF7 double KO (DKO) mice survived LCMV infection with a reduced immune pathology in key organs, such as the liver and spleen. However, similar to STAT1 KO mice, STAT1/IRF7 DKO mice failed to control LCMV replication and spread. LCMV infection in STAT1 KO mice was associated with a significant elevation in the levels of a number of cytokines in serum, including IFN-Is, but this was largely absent in STAT1/IRF7 DKO mice, which had a modest increase in the levels of gamma interferon and CCL2 only. Since IRF7 is known to be a key transcriptional regulator of IFN-I gene expression, the possible role of IFN-I in lethal disease was examined further. STAT1/IFNAR DKO mice, in contrast to STAT1 KO mice, all survived infection with LCMV and exhibited little tissue immune pathology. Additionally, STAT1 KO mice that were deficient for either of the two IFN-I signaling molecules, STAT2 or IRF9, also survived LCMV infection. We conclude that the lethal immune-mediated disease resulting from LCMV infection in STAT1 KO mice is (i) dependent on IRF7-induced IFN-I production and (ii) driven by noncanonical IFN-I signaling via STAT2 and IRF9. IMPORTANCE: Here we report on the basis for the novel, fatal immune-mediated disease of STAT1 KO mice infected with LCMV. Our findings show that, surprisingly, the pathogenesis of this disease is dependent on IRF7-mediated type I interferon production. Moreover, our study identifies noncanonical type I interferon signaling via STAT2 and IRF9 to be essential for the type I IFN-driven fatal disease in LCMV-infected STAT1 KO mice. These results further highlight the significance of noncanonical type I IFN signaling in the pathogenesis of host-mediated injury following viral infection.


Asunto(s)
Genes Letales/inmunología , Interferón Tipo I/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/fisiología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Factor de Transcripción STAT1/fisiología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Coriomeningitis Linfocítica/mortalidad , Coriomeningitis Linfocítica/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tasa de Supervivencia
3.
J Virol ; 88(1): 679-89, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24173226

RESUMEN

Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Sistema Nervioso Central/metabolismo , Lipocalinas/metabolismo , Proteínas Oncogénicas/metabolismo , Fiebre del Nilo Occidental/metabolismo , Animales , Hibridación in Situ , Lipocalina 2 , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba , Fiebre del Nilo Occidental/genética
4.
J Virol ; 86(12): 6932-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496215

RESUMEN

Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT2/inmunología , Animales , Linfocitos T CD4-Positivos/virología , Femenino , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Interferones/genética , Interferones/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/deficiencia , Factor de Transcripción STAT2/genética
5.
J Neurosci ; 30(3): 1149-57, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089923

RESUMEN

Type I interferons (IFN) are crucial in host defense but also are implicated as causative factors for neurological disease. Interferon regulatory factor (IRF9) is involved in type I IFN-regulated gene expression where it associates with STAT1:STAT2 heterodimers to form the transcriptional complex ISGF3. The role of IRF9 in cellular responses to type I IFN is poorly defined in vivo and hence was examined here. While transgenic mice (termed GIFN) with chronic production of low levels of IFN-alpha in the CNS were relatively unaffected, the same animals lacking IRF9 [GIFNxIRF9 knock-out (KO)] had cataracts, became moribund, and died prematurely. The brain of GIFNxIRF9 KO mice showed calcification with pronounced inflammation and neurodegeneration whereas inflammation and retinal degeneration affected the eyes. In addition, IFN-gamma-like gene expression in the CNS in association with IFN-gamma mRNA and increased phosphotyrosine-STAT1 suggested a role for IFN-gamma. However, GIFNxIRF9 KO mice deficient for IFN-gamma signaling developed an even more severe and accelerated disease, indicating that IFN-gamma was protective. In IRF9-deficient cultured mixed glial cells, IFN-alpha induced prolonged activation of STAT1 and STAT2 and induced the expression of IFN-gamma-like genes. We conclude that (1) type I IFN signaling and cellular responses can occur in vivo in the absence of IRF9, (2) IRF9 protects against the pathophysiological actions of type I IFN in the CNS, and (3) STAT1 and possibly STAT2 participate in alternative IRF9-independent signaling pathways activated by IFN-alpha in glial cells resulting in enhanced IFN-gamma-like responses.


Asunto(s)
Interferón Tipo I/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Interferón Tipo I/genética , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Neuroglía/metabolismo , Neuroglía/ultraestructura , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/metabolismo , Análisis de Supervivencia
6.
J Neuroinflammation ; 8: 124, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21943033

RESUMEN

BACKGROUND: Lipocalin 2 (Lcn2) is a bacteriostatic factor that may also modulate cellular function, however, little is known concerning the expression or role of Lcn2 in CNS inflammation. Therefore, here we investigated the regulation and possible function of Lcn2 in the CNS following peripheral lipopolysaccharide (LPS) injection in mice. METHODS: A murine model for systemic endotoxemia was used in this study. Wild type or Lcn2 KO mice (both genotypes C57BL/6 strain) were given either a single or dual, staggered intraperitoneal injections of purified E. coli LPS or vehicle alone. The brain was examined for the expression and location of Lcn2 mRNA and protein and various markers for neuroinflammation were analyzed. RESULTS: Although undetectable under physiological conditions, both Lcn2 mRNA and protein were induced to high levels in the brain after LPS injection. By contrast, RNA corresponding to the putative Lcn2 (termed 24p3R) receptor was present at high levels in the normal brain and remained unaltered by LPS injection. Differences between Lcn2 and 24p3R mRNA expression were found at the anatomic and cellular level. Endothelial cells, microglia and the choroid plexus but not neurons were identified as the main cellular sources for Lcn2 mRNA in the CNS. By contrast, 24p3R mRNA was detected in neurons and the choroid plexus only. Lcn2 protein was found to have a similar cellular localization as the corresponding RNA transcripts with the exception that subsets of neurons were also strongly positive. Various inflammatory, glial, and iron handling markers were analyzed and found to have similar alterations between WT and Lcn2 KO animals. CONCLUSIONS: 1) Lcn2 production is strongly induced in the CNS by systemic LPS injection, 2) in addition to Lcn2 production at key gateways of bacterial entry to the CNS, neurons may be a target for the actions of Lcn2, which is apparently taken up by these cells, and 3) the cellular functions of Lcn2 in the CNS remain enigmatic.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Lipocalinas/metabolismo , Lipopolisacáridos/farmacología , Proteínas Oncogénicas/metabolismo , Proteínas de Fase Aguda/genética , Animales , Línea Celular , Quimiocinas/genética , Quimiocinas/inmunología , Citocinas/genética , Citocinas/inmunología , Endotoxemia/inducido químicamente , Endotoxemia/inmunología , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Lipocalina 2 , Lipocalinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/efectos de los fármacos , Microglía/inmunología , Proteínas Oncogénicas/genética , Poli I-C/farmacología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA