Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Org Chem ; 89(5): 3304-3308, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38356371

RESUMEN

A protocol for the construction of an angular tricyclic benzofuran skeleton based on the C-H activation strategy has been established. Different phthalide lactones on this skeleton can be easily assembled with various side chains by using C-H activation with aldehydes and subsequent reduction. This skeleton provides a versatile and crucial motif for the total synthesis of naturally occurring angular tricyclic benzofurans and their derivatives. Based on this protocol, the improved total syntheses of daldinin A and annullatin D were achieved in yields of 17.3 and 7.6%, respectively.

2.
Curr Microbiol ; 81(4): 108, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461425

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Virulencia , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Factores de Virulencia
3.
J Sci Food Agric ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177277

RESUMEN

BACKGROUND: The present study evaluated the effects of temperature, pH, light and chemical oxidation on fucoxanthin changes in terms of colour, antioxidant activity and metabolomic profile. Additionally, the correlation between antioxidant activity and identified metabolites was analysed. RESULTS: It was found that colour change was significantly reduced at elevated heat (100 °C, *∆E = 0.81 ± 0.05), reduced pH (pH 3, *∆E = 0.59 ± 0.04) and length of light exposure (*∆E = 3.16 ± 0.04). Antioxidant activity decreased under all treatments. Among the temperatures tested, fucoxanthin exhibited the highest activity at 60 °C, ranging from 0.92 to 3.04 mg Trolox equivalents (TE) g-1. Significant activity reductions (P < 0.05) were observed as a result of pH changes in the 2,2-diphenyl-1-picrylhydrazyl and ß-carotene bleaching assays. Exposure to light 2: warm white lamp for 120 h significantly reduced antioxidant activity (0.01 to 1.70 mg TE g-1). Chemical oxidation also led to reduced activity, ranging from 0.18 to 0.29 mg TE g-1. Multivariate data analysis revealed distinct profiles for temperature, pH, light and chemical oxidation treatments. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics analysis identified 10 metabolites, and significant correlations (P < 0.05) indicate that these metabolites contributed to the samples' antioxidant activities. CONCLUSION: In conclusion, fucoxanthin tolerates well at 60 °C, within pH range 3-9, and within 8 h of light exposure, as indicated by its consistent antioxidant activity and minimal colour change. Each treatment resulted in distinct metabolite concentrations, as shown by LC-MS/MS-based metabolomics analysis. Further research into these metabolites could advance the understanding of their roles and aid in optimising processing conditions to favour beneficial metabolites. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Clin Exp Rheumatol ; 40(7): 1420-1431, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34874837

RESUMEN

A healthy lifestyle is critical to maintaining safety and preventing rheumatic disease before reaching old age. Rheumatoid arthritis (RA) is a chronic autoimmune and systemic illness involving joint changes, including inflammation, joint pain, tiredness, elevated risk of developing coronary and heart disease, and rapid loss of muscle mass. The role of exercise in improving the inflammatory pattern has tended to focus on the latest research. However, some physical activities represent a non-pharmacological treatment strategy due to their many benefits, such as improved muscle mass, strength, and efficiency, especially in patients with RA. During exercise, skeletal muscle releases myokines, triggering a direct anti-inflammatory effect with each activity or enhancing comorbidity. The level of inflammatory biomarkers, such as tumour necrosis factor, C-reactive protein, and interleukin-6, is significantly lower for athletes and patients with RA who exercise regularly. However, understanding the precise roles of some environmental and genetic factors can help to prevent rheumatic disorders. This review highlights the influence of exercise and training on the inflammatory module in patients with rheumatic disease. More detailed data is needed to clarify the benefits of exercise in the context of RA and inflammation.


Asunto(s)
Artritis Reumatoide , Enfermedades Reumáticas , Artritis Reumatoide/tratamiento farmacológico , Ejercicio Físico/fisiología , Humanos , Inflamación , Factor de Necrosis Tumoral alfa/uso terapéutico
5.
Molecules ; 26(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207699

RESUMEN

Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.


Asunto(s)
Desoxiglucosa/farmacología , Garcinia/química , Aceites Volátiles/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Potencial de la Membrana Mitocondrial , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Hojas de la Planta/química
6.
Pharm Biol ; 59(1): 494-503, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33905665

RESUMEN

CONTEXT: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the biological industry, pectin has been left behind in synthesising MNPs, for no known reason. OBJECTIVE: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs). METHODS: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and ResearchGate were systematically searched from the date of their inception until 10th February 2020. Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations for systematic reviews. RESULTS: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies), non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study). CONCLUSIONS: This systematic review demonstrates the current state of the art of Pe-MNPs biological activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understanding of the pharmacological potential of pectin synthesised MNPs.


Asunto(s)
Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Pectinas/química , Animales , Cerio/química , Portadores de Fármacos/química , Oro/química , Humanos , Sustancias Reductoras/química , Plata/química
7.
J Sep Sci ; 43(16): 3294-3303, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32519432

RESUMEN

In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption-based dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte-containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5-500 µg/L with a coefficient of determination of R2  = 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84-120%) and acceptable relative standard deviation (1.8-14.9%, n = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.

8.
J Cell Biochem ; 120(6): 9104-9116, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548289

RESUMEN

Stem cell therapy offers hope to reconstitute injured myocardium and salvage heart from failing. A recent approach using combinations of derived Cardiac-derived c-kit expressing cells (CCs) and mesenchymal stem cells (MSCs) in transplantation improved infarcted hearts with a greater functional outcome, but the effects of MSCs on CCs remain to be elucidated. We used a novel two-step protocol to clonogenically amplify colony forming c-kit expressing cells from 4- to 6-week-old C57BL/6N mice. This method yielded highly proliferative and clonogenic CCs with an average population doubling time of 17.2 ± 0.2, of which 80% were at the G1 phase. We identified two distinctly different CC populations based on its Sox2 expression, which was found to inversely related to their nkx2.5 and gata4 expression. To study CCs after MSC coculture, we developed micron-sized particles of iron oxide-based magnetic reisolation method to separate CCs from MSCs for subsequent analysis. Through validation using the sex and species mismatch CC-MSC coculture method, we confirmed that the purity of the reisolated cells was greater than 85%. In coculture experiment, we found that MSCs prominently enhanced Ctni and Mef2c expressions in Sox2 pos CCs after the induction of cardiac differentiation, and the level was higher than that of conditioned medium Sox2 pos CCs. However, these effects were not found in Sox2 neg CCs. Immunofluorescence labeling confirmed the presence of cardiac-like cells within Sox2 pos CCs after differentiation, identified by its cardiac troponin I and α-sarcomeric actinin expressions. In conclusion, this study shows that MSCs enhance CC differentiation toward cardiac myocytes. This enhancement is dependent on CC stemness state, which is determined by Sox2 expression.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Dexametasona/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698679

RESUMEN

Cardiac c-kit cells show promise in regenerating an injured heart. While heart disease commonly affects elderly patients, it is unclear if autologous cardiac c-kit cells are functionally competent and applicable to these patients. This study characterised cardiac c-kit cells (CCs) from aged mice and studied the effects of human Wharton's Jelly-derived mesenchymal stem cells (MSCs) on the growth kinetics and cardiac differentiation of aged CCs in vitro. CCs were isolated from 4-week- and 18-month-old C57/BL6N mice and were directly co-cultured with MSCs or separated by transwell insert. Clonogenically expanded aged CCs showed comparable telomere length to young CCs. However, these cells showed lower Gata4, Nkx2.5, and Sox2 gene expressions, with changes of 2.4, 3767.0, and 4.9 folds, respectively. Direct co-culture of both cells increased aged CC migration, which repopulated 54.6 ± 4.4% of the gap area as compared to aged CCs with MSCs in transwell (42.9 ± 2.6%) and CCs without MSCs (44.7 ± 2.5%). Both direct and transwell co-culture improved proliferation in aged CCs by 15.0% and 16.4%, respectively, as traced using carboxyfluorescein succinimidyl ester (CFSE) for three days. These data suggest that MSCs can improve the growth kinetics of aged CCs. CCs retaining intact telomere are present in old hearts and could be obtained based on their self-renewing capability. Although these aged CCs with reduced growth kinetics are improved by MSCs via cell-cell contact, the effect is minimal.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Células Madre Mesenquimatosas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Gelatina de Wharton/citología , Envejecimiento/fisiología , Animales , Proliferación Celular , Células Clonales , Humanos , Cinética , Ratones Endogámicos C57BL , Telomerasa/metabolismo , Homeostasis del Telómero
10.
Int J Mol Sci ; 19(6)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891772

RESUMEN

In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1⁻20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality.


Asunto(s)
Oro/toxicidad , Nanopartículas del Metal/toxicidad , Plantas/metabolismo , Animales , Humanos , Tamaño de la Partícula
11.
J Sci Food Agric ; 98(3): 1197-1207, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28746729

RESUMEN

BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively. RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control. CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Pleurotus/metabolismo , Plata/metabolismo , Plata/farmacología , Antifúngicos/química , Candida albicans/crecimiento & desarrollo , Tecnología Química Verde , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Pleurotus/química , Plata/química
12.
J Food Sci ; 89(2): 1058-1072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221804

RESUMEN

Volatile organic compounds in honey are known for their considerable impact on the organoleptic properties of honey, such as aroma, flavor, taste, and texture. The type and composition of volatile organic compounds are influenced by entomological, geographical, and botanical origins; thus, these compounds have the potential to be chemical markers. Sixty-two volatile compounds were identified using gas chromatography-mass spectrometry from 30 Heterotrigona itama (H. itama) honey samples from 3 different geographical origins. Hydrocarbons and benzene derivatives were the dominant classes of volatile organic compounds in the samples. Both clustering and discriminant analyses demonstrated a clear separation between samples from distant origins (Kedah and Perak), and the volcano plot supported it. The reliability and predictability of the partial least squares-discriminant analysis model from the discriminant analysis were validated using cross-validation (R2 : 0.93; Q2 : 0.83; accuracy: 0.97) and the permutation test (p < 0.001), and the output depicted that the model is legitimate. In combination with the variable importance of projection (VIP > 1.0) and the Kruskal-Wallis test (p < 0.01), 19 volatile organic compounds (encompassed aldehydes, benzene derivatives, esters, hydrocarbons, and terpenoids) were sorted and named potent chemical markers in classifying honey samples from three geographical origins. In brief, this study illustrated that volatile organic compounds of stingless honey originated from the same bee species, but different geographical origins could be applied as chemical markers.


Asunto(s)
Miel , Compuestos Orgánicos Volátiles , Abejas , Animales , Miel/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Reproducibilidad de los Resultados , Malasia , Terpenos/análisis , Derivados del Benceno
13.
J Food Sci ; 89(2): 811-833, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224177

RESUMEN

This systematic review paper aims to discuss the trend in quality assessment properties and constituents of honey at different storage conditions and confer the possible whys and wherefores associated with the significant changes. Initially, a literature search was conducted through Google Scholar, ScienceDirect, PubMed, and Scopus databases. In total, 43 manuscripts published between 2001 and 2023 that met the inclusion and exclusion criteria were chosen for the review. As an outcome of this review, prolonged honey storage could deteriorate sensory, nutritional, and antioxidant properties and promote fermentation, granulation, microbial growth, carcinogenicity, organotoxicity, and nephrotoxicity. This systematic review also recognized that diastase activity, invertase activity, 5-hydroxymethylfurfural content, proline content, sugar content, amino acids, and vitamins could be used as indicators to distinguish fresh and stored honey based on the significant test (p-value) in the reported studies. However, all the reported studies used the simplest approach (one-way ANOVA) to identify the significant differences in the analyzed parameter during the storage period and none of them reported an approach to identify the most influential parameter at different storage conditions. In conclusion, orthogonal partial least squares discriminant analysis (supervised multivariate statistical tool) has to be employed in future studies to find the most influential parameter and could be used to potent chemical markers to distinguish fresh and stored honey because this analysis is incorporated with S-plot, variable importance of projection, and one-way ANOVA, which can produce the most accurate and precise results rather solely depending on one-way ANOVA.


Asunto(s)
Almacenamiento de Alimentos , Miel , Aminoácidos/análisis , Antioxidantes/análisis , Almacenamiento de Alimentos/métodos , Almacenamiento de Alimentos/estadística & datos numéricos , Furaldehído/análogos & derivados , Miel/análisis , Miel/estadística & datos numéricos
14.
Int J Biol Macromol ; 278(Pt 3): 134893, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168213

RESUMEN

Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 µg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 µg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 µg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.


Asunto(s)
Acanthaceae , Tecnología Química Verde , Nanopartículas del Metal , Microondas , Extractos Vegetales , Polisacáridos , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Acanthaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Artemia/efectos de los fármacos
15.
Food Chem ; 463(Pt 2): 141209, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278076

RESUMEN

Limited knowledge of fucoxanthin's changes during digestion necessitates comprehensive investigation to ensure its efficacy as a functional ingredient. This study assessed the effects of digestion on fucoxanthin's bioaccessibility, antioxidant activity, colour changes, and metabolite formation through in vitro gastrointestinal digestion. Results indicated the highest bioaccessibility during gastric digestion (0.03 ± 0.00 mg/mL), followed by intestinal and mouth with 0.012 ± 0.00 and 0.011 ± 0.13 mg/mL, respectively. Antioxidant activity was the highest at the gastric stage, with significant activity persisting post-digestion (P < 0.05). Colour changes were significant, with total colour differences (∆E*) of 2.40, 2.86, and 2.76 at the mouth, gastric, and intestinal stages, respectively. LC-MS/MS-based metabolomics analysis revealed 15 key metabolites, with carboxylic acids as major metabolites during gastric and intestinal stages. Pearson correlation analysis demonstrated a significant correlation between identified metabolites with bioaccessibility, antioxidant activity, and colour changes, underscoring fucoxanthin's potential as a promising functional food ingredient.

16.
Int J Nanomedicine ; 19: 1339-1350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348172

RESUMEN

Introduction: This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol). Methods: AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay. Results: The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas del Metal/química , Quempferoles/farmacología , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X
17.
BMC Complement Med Ther ; 24(1): 358, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367403

RESUMEN

Natural products derived from various sources, including plants, have garnered significant interest as alternative therapeutic options. Among these, Tualang honey, extracted from the nectar of Tualang trees (Koompassia excelsa (Becc.) Taub.), has a long history of traditional use due to its therapeutic properties. This review aims to examine the pharmacological activities of Tualang honey, encompassing both in vitro and in vivo studies. A systematic search was conducted in multiple databases, including PubMed, Springer, Scopus, Wiley, and Science Direct, up until December 2022 to identify relevant studies on the pharmacological activities of Tualang honey. Two independent reviewers were involved in article selection, followed by data extraction and assessment of methodological quality using Syrcle's risk of bias tool. 123 articles were included, collectively describing the pharmacological activities of Tualang honey, including antimicrobial, anticancer, anti-inflammatory, antioxidant, antinociceptive, neuroprotective effects, and others. Tualang honey has significant promise as an alternative treatment option for treating a wide range of pathological diseases due to its wide range of pharmacological properties. Tualang honey's diverse array of pharmacological actions indicates its potential for multiple medicinal uses.


Asunto(s)
Miel , Humanos , Animales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Antiinflamatorios/farmacología
18.
Int J Mol Sci ; 14(12): 24670-91, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24351841

RESUMEN

The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.


Asunto(s)
Amidas/química , Cisteína/química , Disulfuros/química , Portadores de Fármacos/síntesis química , Polímeros/química , Antiinflamatorios/administración & dosificación , Bacteroides fragilis/metabolismo , Cisteína/metabolismo , Portadores de Fármacos/química , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Oxidación-Reducción
19.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37259414

RESUMEN

Zinc oxide and curcumin, on their own and in combination, have the potential as alternatives to conventional anticancer drugs. In this work, zinc oxide nanoparticles (ZnO NPs) were prepared by an eco-friendly method using pure curcumin, and their physicochemical properties were characterised. ATR-FTIR spectra confirmed the role of curcumin in synthesising zinc oxide curcumin nanoparticles (Green-ZnO-NPs). These nanoparticles exhibited a hexagonal wurtzite structure with a size and zeta potential of 27.61 ± 5.18 nm and -16.90 ± 0.26 mV, respectively. Green-ZnO-NPs showed good activity towards studied bacterial strains, including Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. The minimum inhibitory concentration of Green-ZnO-NPs was consistently larger than that of chemically synthesised ZnO NPs (Std-ZnO-NPs) or mere curcumin, advocating an additive effect between the zinc oxide and curcumin. Green-ZnO-NPs demonstrated an efficient inhibitory effect towards MCF-7 cells with IC50 (20.53 ± 5.12 µg/mL) that was significantly lower compared to that of Std-ZnO-NPs (27.08 ± 0.91 µg/mL) after 48 h of treatment. When Green-ZnO-NPs were tested against Artemia larvae, a minimised cytotoxic effect was observed, with LC50 being almost three times lower compared to that of Std-ZnO-NPs (11.96 ± 1.89 µg/mL and 34.60 ± 9.45 µg/mL, respectively). This demonstrates that Green-ZnO-NPs can be a potent, additively enhanced combination delivery/therapeutic agent with the potential for anticancer therapy.

20.
F1000Res ; 12: 1214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38962299

RESUMEN

Background: Recent evidence suggests that some flavonoid compounds obtained from crude methanol extract of mistletoe leaves ( Dendrophthoe pentandra L. Miq), also known as Benalu Duku (BD), have antimicrobial effects. Thus, the plant has the potential to eliminate viruses that may cause outbreaks in chicken farms. This study aimed to prove the in vitro ability of flavonoid compounds, namely quercetin-like compounds (QLCs), to eliminate field viruses, specifically the Newcastle disease virus (NDV). Methods: This research was performed in two stages. An in vitro test was used with a post-test of the control groups designed at a significance of 0.05. BD leaves (5 kg) were extracted using a maceration method with methanol and then separated into hexane, chloroform, ethyl acetate, and methanol fractions. The final extracted products were separated using semi-preparative high-performance liquid chromatography (HPLC) to obtain QLCs. The QLCs were identified and compared with quercetin using HPLC, proton and carbon nuclear magnetic resonance spectrometry, Fourier transform infrared spectrophotometry and ultra-performance liquid chromatography-mass spectrometry. The activity of QLCs was tested in vitro against the NDV at a virulence titter of 10 -5 Tissue Culture Infectious Dose 50% (TCID50) in chicken kidney cell culture. Results: Solutions of 0.05% (w/v) QLCs were discovered to have antiviral activity against NDVs, with an average cytopathogenic effect antigenicity at a 10 -5 dilution (p<0.05). Conclusions: QLCs from flavonoids from the leaves of BD have in vitro antiviral bioactivity against NDV at a virulence titter of 10-5 Tissue Culture Infectious Dose 50% (TCID50) in chicken kidney cell culture. QLCs may have the potential to be developed as medicinal compounds for the treatment of other human or animal viral infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA