Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 28(9): 1657-1669, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36387981

RESUMEN

Ethylene regulates different aspects of the plant's life cycle, such as flowering, and acts as a defense signal in response to environmental stresses. Changes induced by water deficit (WD) in gene expression of the main enzymes involved in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO), are frequently reported in plants. In this study, coffee (Coffea arabica) ACS and ACO family genes were characterized and their expression profiles were analyzed in leaves, roots, flower buds, and open flowers from plants under well-watered (WW) and water deficit (WD) conditions. Three new ACS genes were identified. Water deficit did not affect ACS expression in roots, however soil drying strongly downregulated ACO expression, indicating a transcriptional constraint in the biosynthesis pathway during the drought that can suppress ethylene production in roots. In floral buds, ACO expression is water-independent, suggesting a higher mechanism of control in reproductive organs during the final flowering stages. Leaves may be the main sites for ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) production in the shoot under well-watered conditions, contributing to an increase in the ethylene levels required for anthesis. Given these results, we suggest a possible regulatory mechanism for the ethylene biosynthesis pathway associated with coffee flowering with gene regulation in leaves being a key point in ethylene production and ACO genes play a major regulatory role in roots and the shoots. This mechanism may constitute a regulatory model for flowering in other woody species. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01235-y.

2.
Sci Rep ; 14(1): 2556, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297150

RESUMEN

Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.


Asunto(s)
Beauveria , Eucalyptus , Avispas , Animales , Avispas/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Beauveria/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia
3.
Sci Rep ; 8(1): 16069, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375421

RESUMEN

Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.


Asunto(s)
Frutas/genética , MicroARNs/genética , ARN Mensajero/genética , Solanum lycopersicum/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Solanum lycopersicum/crecimiento & desarrollo
4.
J Plant Physiol ; 209: 11-19, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27988471

RESUMEN

Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel®48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA3), and ethylene quantification were carried out during the first 72h after Ethrel®48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24h after Ethrel®48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72h after Ethrel®48 treatment. Ethrel®48 lead to a reduction in GA3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel®48 may also have contributed to the reduction of GA3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA3 and ethylene. Decreased GA3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel®48 treatment, providing new insights into how pineapple flowering occurs under natural conditions.


Asunto(s)
Ananas/anatomía & histología , Ananas/citología , Flores/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Secuencia de Aminoácidos , Ananas/genética , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA