Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev E ; 101(4-1): 040102, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422809

RESUMEN

Nonadditive Tsallis q-statistics has successfully been applied for a plethora of systems in natural sciences and other branches of knowledge. Nevertheless, its foundations have been severely criticized by some authors based on the standard additive Boltzmann-Gibbs approach, thereby remaining a quite controversial subject. In order to clarify some polemical concepts, the distribution function for an ideal gas with a finite number of point particles and its q-index are analytically determined. The two-particle correlation function is also derived. The degree of correlation diminishes continuously with the growth of the number of particles. The ideal finite gas system is usually correlated, becomes less correlated when the number of particles grows, and is finally fully uncorrelated when the molecular chaos regime is reached. It is also advocated that both approaches can be confronted through a careful kinetic spectroscopic experiment. The analytical results derived here suggest that Tsallis q-statistics may play a physical role more fundamental than usually discussed in the literature.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 2): 057101, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16383791

RESUMEN

A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.

3.
Phys Rev Lett ; 97(8): 081301, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-17026287

RESUMEN

A new cosmological scenario driven by a slow rolling homogeneous scalar field whose exponential potential V(Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is discussed. The derived equation of state for the field predicts a transient accelerating phase, in which the Universe was decelerated in the past, began to accelerate at redshift z approximately 1, is currently accelerated, but, finally, will return to a decelerating phase in the future. This overall dynamic behavior is profoundly different from the standard evolution of the cold dark matter model with a cosmological constant, and may alleviate some conflicts in reconciling the idea of a dark-energy-dominated universe with observables in String or M theory. Some theoretical predictions for the present scalar field plus dark matter dominated stage are confronted with cosmological observations in order to test the viability of the scenario.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA