Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Behav Pharmacol ; 33(8): 575-588, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256730

RESUMEN

During pregnancy, women are prone to depression, for which selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are usually the first-line treatment. However, fluoxetine can cross the placental barrier and affect fetuses, causing changes in serotonin levels early in life. Long-term effects in the brain circuits that control cognitive and emotional behavior are related to early fluoxetine exposure during development. In this study, we aimed to investigate whether fluoxetine exposure (10 mg/kg/day) from the 13th gestational day (GD13) to GD21 may lead to behavioral emotional-cognitive changes in male and female rat offspring approximately 90 days postnatally (~PN90). We have analyzed the performance of individuals in the open field and in the plus-maze discriminative avoidance task, which assesses anxiety and learning/memory processing behaviors. We have found that prenatal (GD13-GD21) exposure to fluoxetine strengthened aversive memory and induced higher anxiety levels in males, and quick extinction of aversive memory in females. Taken together, these results suggest that early exposure to fluoxetine impairs the basal state of anxiety and the cognitive functions of rats during adulthood, which may be in a sex-specific manner because males appear more susceptible than females.


Asunto(s)
Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Ratas , Femenino , Animales , Masculino , Embarazo , Humanos , Fluoxetina/farmacología , Placenta , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ansiedad/inducido químicamente
2.
Behav Processes ; 199: 104660, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35550163

RESUMEN

Stress encompasses reactions to stimuli that promote negative and positive effects on cognitive functions, such as learning and memory processes. Herein, we investigate the effect of restraint stress on learning, memory, anxiety levels and locomotor activity of male and female mice. We used the plus-maze discriminative avoidance task (PMDAT), a behavioral task based on the innate exploratory response of rodents to new environments. Moreover, this task is used to simultaneously evaluate learning, memory, anxiety-like behavior and locomotor activity. Male and female mice were tested after repeated daily restraint stress (4 h/day for 3 days). The results showed stress-induced deficits on aversive memory retrieval only in female mice, suggesting a sexual dimorphism on memory acquisition. Furthermore, stressed females exhibited increased anxiety-like behavior and decreased exploratory behavior. Plasma corticosterone levels were similarly increased by restraint stress in both sexes, suggesting that the behavioral outcome was not related to hormonal secretion. Our findings corroborate previous studies, showing a sexually dimorphic effect of restraint stress on cognition. In addition, our study suggests that stress-related acquisition deficit may be the consequence of elevated emotional response in females.


Asunto(s)
Miedo , Memoria , Animales , Ansiedad , Conducta Animal , Corticosterona , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Medición de Riesgo , Estrés Psicológico
3.
Int J Dev Neurosci ; 82(5): 407-422, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35481929

RESUMEN

Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation and organisation of neural circuitries related to emotional, cognitive and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalisation. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20 mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over 4 weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.


Asunto(s)
Ritmo Circadiano , Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Animales , Antidepresivos , Ritmo Circadiano/fisiología , Femenino , Fluoxetina/farmacología , Locomoción , Masculino , Neuropéptido Y , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Wistar , Serotonina/metabolismo
4.
Alcohol ; 90: 1-9, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33031882

RESUMEN

Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.


Asunto(s)
Encéfalo/enzimología , Etanol , Indolamina-Pirrol 2,3,-Dioxigenasa , Síndrome de Abstinencia a Sustancias , Animales , Ansiedad , Depresión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análisis , Masculino , Ratas , Ratas Wistar
5.
Int J Dev Neurosci ; 81(7): 616-632, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34196404

RESUMEN

The exposure to selective serotonin reuptake inhibitors (SSRIs) during development results in behavioural impairment in adulthood in humans and animal models. Indeed, serotonergic overexpression in early life leads to structural and functional changes in brain circuits that control cognition and emotion. However, the effects of developmental exposure to these substances on the behaviour of adolescent rats are conflicting and remain poorly characterised. We performed a behavioural screening to investigate the effects of postnatal exposure to fluoxetine on memory and behaviours related to anxiety, anhedonia, and depression, as well we evaluate the parvalbumin expression in hippocampus of juvenile (~PND45) female and male rats. Fluoxetine (daily 20 mg/kg s.c. injections from PND7-PND21)- or vehicle-treated adolescent rats went through several behavioural tasks (from PND 38 to PND52) and were subject to transcardial perfusion and brain removal for immunohistochemical analysis (PND53). We found that postnatal exposure to fluoxetine increased anxiety- and depression-like behaviours in the open field and sucrose preference and forced swimming tests, respectively. In addition, this treatment induced working memory and short-term (but not long-term) recognition memory impairments, and reduced parvalbumin-positive interneurons in the hippocampus. In addition, the results revealed developmental sex-dependent effects of fluoxetine postnatal treatment on adolescent rats' behaviour. These outcomes indicate that affective disorders and mnemonic alterations caused by SSRIs perinatal exposure can be present at adolescence.


Asunto(s)
Cognición/efectos de los fármacos , Emociones/efectos de los fármacos , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Masculino , Memoria/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Natación
6.
Front Psychol ; 11: 1795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849060

RESUMEN

Empathy is the ability to (a) be affected by and share the emotional state of another; (b) assess the reasons for the other's state; and (c) identify with the other, adopting their perspective. This phenomenon has been shown to exist in several species and is proposed as a motivator for prosocial behavior. The experimental study of this feature in laboratory rodents is a more viable alternative in comparison to wild animals. A recent report showed that rats opened a door to free their cage mate from a restraint box. Although this behavior has been suggested to be motivated by empathy, this fact has been questioned by several studies that proposed other motivators for the releasing behavior. In the present study, we use an adaptation of the protocol of releasing behavior to investigate aspects of empathy and pro-sociality such as familiarity and reciprocity. In addition, we addressed some potential motivational factors that could influence this behavior. The main results showed that (1) rats opened the restraint box to free conspecifics most of the time; (2) direct reciprocity or past restriction experience did not improve releasing performance, probably due to a ceiling effect; (3) after a series of trials in the presence of a restricted conspecific, the free rat continues to open the restraint box even if it is empty; (4) in general, the opening performance improves across trials and phases, resembling learning curves; (5) if the first series of trials occurs with the empty box, the opening behavior does not occur and is modest in subsequent trials with a trapped animal; (6) the exploratory drive toward the restraint box and desire for social contact do not seem to function as key motivators for releasing behavior. In conclusion, our findings do not support that the opening behavior is exclusively related to empathic motivation. While multiple factors might be involved, our study suggests that task learning triggered (and possibly reinforced) by the presence of the restricted rat can function as a motivator. Further investigations are required to fully understand the mechanisms and motivation factors guiding the releasing behavior.

7.
Behav Brain Res ; 359: 165-171, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359643

RESUMEN

Episodic-like memory refers to integration of where and when a certain event (what) happened. The glutamatergic neurotransmission, particularly AMPA and NMDA receptors, in the dorsal hippocampus mediates episodic recall. Ketamine is a non-competitive NMDA antagonist with effect on cognitive performance and plasticity. The goal of this study was to evaluate the acute action of ketamine on behavioural and neurochemical aspects of episodic-like memory (WWWhen/ELM task) through immediate-early gene expression (IEG), c-Fos, in the dorsal hippocampus. Animals received saline 0.9% or ketamine at 8 mg/kg or 15 mg/kg (i.p.) immediately after the second sample. Our data indicate that untreated and saline rats integrate the three elements of episodic-like memory. Conversely, animals treated with ketamine showed impairment of ELM formation. In addition, the highest dose of ketamine increased c-Fos expression in dorsal CA1 subregion when compared to saline rats. Our results indicate that the antagonism of NMDA concurrently impair ELM formation of all three aspects of ELM and increase neuronal activation in dorsal CA1.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/efectos adversos , Ketamina/efectos adversos , Trastornos de la Memoria/inducido químicamente , Memoria Episódica , Psicotrópicos/efectos adversos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Anestésicos Disociativos/efectos adversos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Relación Dosis-Respuesta a Droga , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28835767

RESUMEN

Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson's disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD.

9.
PLoS One ; 10(6): e0130354, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098896

RESUMEN

The development of therapeutic approaches to improve the life quality of people suffering from different types of body paralysis is a current major medical challenge. Brain-machine interface (BMI) can potentially help reestablishing lost sensory and motor functions, allowing patients to use their own brain activity to restore sensorimotor control of paralyzed body parts. Chronic implants of multielectrodes, employed to record neural activity directly from the brain parenchyma, constitute the fundamental component of a BMI. However, before this technique may be effectively available to human clinical trials, it is essential to characterize its long-term impact on the nervous tissue in animal models. In the present study we evaluated how chronic implanted tungsten microelectrode arrays impact the distribution and morphology of interneurons reactive to calcium-binding proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) across the rat's motor cortex. Our results revealed that chronic microelectrode arrays were well tolerated by the nervous tissue, with recordings remaining viable for up to 6 months after implantation. Furthermore, neither the morphology nor the distribution of inhibitory neurons were broadly impacted. Moreover, restricted microglial activation was observed on the implanted sites. On the whole, our results confirm and expand the notion that tungsten multielectrodes can be deemed as a feasible candidate to future human BMI studies.


Asunto(s)
Calbindina 1/metabolismo , Calbindina 2/metabolismo , Electrodos Implantados/efectos adversos , Implantes Experimentales/efectos adversos , Parvalbúminas/metabolismo , Animales , Ondas Encefálicas/fisiología , Interfaces Cerebro-Computador/efectos adversos , Masculino , Microglía/metabolismo , Corteza Motora/fisiología , Corteza Motora/cirugía , Ratas , Ratas Wistar
10.
Physiol Behav ; 152(Pt A): 272-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471840

RESUMEN

Studies from the last two decades have pointed to multiple mechanisms of fear. For responding to predators, there is a group of highly interconnected hypothalamic nuclei formed by the anterior hypothalamic nucleus, the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus­the predator-responsive hypothalamic circuit. This circuit expresses Fos in response to predator presence or its odor. Lesion of any component of this system blocks or reduces the expression of fear and consequently defensive behavior when faced with a predator or its cue. However, most of the knowledge about that circuit has been obtained using the rat as a model of prey and the cat as a source of predator cues. In the present study, we exposed mice to strong cat or snake odors, two known mice predators, and then we used the rat exposure test (RET) to study their behavior when confronted with the same predator's odor. Our data point to a differential response of mice exposed to these odors. When Swiss mice were exposed to the cat odor, they show defensive behavior and the predator-responsive hypothalamic circuit expressed Fos. The opposite was seen when they faced snake's odor. The acute odor exposure was not sufficient to activate the mouse predator-responsive hypothalamic circuit and the mice acted like they were not in a stressful situation, showing almost no sign of fear or defensive posture. This leads us to the conclusion that not all the predator cues are sufficient to activate the predator-responsive hypothalamic circuit of mice and that their response depends on the danger that these predators represent in the natural history of the prey.


Asunto(s)
Encéfalo/fisiología , Odorantes , Percepción Olfatoria/fisiología , Conducta Predatoria , Animales , Boidae , Gatos , Inmunohistoquímica , Masculino , Ratones , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA