Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecol Lett ; 26(6): 883-895, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059694

RESUMEN

Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic-oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience. We found that trait diversity did not always increase resilience: greater diversity in two of the groups increased but in one group decreased resilience of their preferred ecosystem state. We also found that simultaneous trait diversity in multiple groups often led to reduced or erased diversity effects. Overall, our results suggest that higher diversity can increase resilience but can also promote collapse when diversity occurs in a functional group that negatively influences the state it occurs in. We propose this mechanism as a potential management approach to facilitate the recovery of a desired ecosystem state.


Asunto(s)
Biodiversidad , Ecosistema , Modelos Teóricos , Bacterias , Fenotipo
2.
Proc Biol Sci ; 288(1946): 20202967, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715427

RESUMEN

Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.


Asunto(s)
Evolución Biológica , Ambiente , Aclimatación , Adaptación Fisiológica , Dinámica Poblacional
3.
Ecol Lett ; 22(11): 1828-1837, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31392829

RESUMEN

Metacommunity theory suggests that dispersal is a key driver of diversity and ecosystem functioning in changing environments. The capacity of dispersal to mitigate effects of environmental change might vary among trophic groups, potentially resulting in changes in trophic interactions and food web structure. In a mesocosm experiment, we compared the compositional response of bacteria, phyto- and zooplankton to a factorial manipulation of acidification and dispersal. We found that the buffering capacity of dispersal varied among trophic groups: dispersal alleviated the negative effect of acidification on phytoplankton diversity mid-experiment, but had no effect on the diversity of zooplankton and bacteria. Likewise, trophic groups differed in whether dispersal facilitated compositional change. Dispersal accelerated changes in phytoplankton composition under acidification, possibly mediated by changes in trophic interactions, but had no effect on the composition of zooplankton and bacteria. Overall, our results suggest that the potential for spatial insurance can vary among trophic groups.


Asunto(s)
Ecosistema , Zooplancton , Animales , Bacterias , Cadena Alimentaria , Fitoplancton
4.
J Phycol ; 55(2): 404-414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556585

RESUMEN

Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 µmol photon · m-2  · s-1 and at 4-5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C-15°C range at light levels ≤50 µmol photon · m-2 · s-1 . At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 µmol photon · m-2 · s-1 and 200 µmol photon · m-2  · s-1 over the entire temperature range but did not grow under a combination of very low light (10 µmol photon · m-2  · s-1 ) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.


Asunto(s)
Chrysophyta , Criptófitas , Plancton , Temperatura , Agua
5.
Genome ; 61(4): 298-309, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29241022

RESUMEN

Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Genoma/genética , Genómica/métodos , Animales , Ambiente , Genética de Población , Modelos Biológicos , Fenotipo , Dinámica Poblacional , Sitios de Carácter Cuantitativo/genética
6.
Ecology ; 98(4): 1082-1092, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28112404

RESUMEN

The fluxes of energy, matter, and organisms are important structuring forces of metaecosystems. Such ecosystem fluxes likely interact with environmental heterogeneity and differentially affect the diversity of multiple communities. In an aquatic mesocosm experiment, we tested how ecosystem flux and patch heterogeneity affected the diversity of bacteria, phytoplankton, and zooplankton metacommunities, and the structure and functioning of metaecosystems. We built metaecosystems consisting of three mesocosms that were either connected by flux of living organisms, organic material, and nutrients (alive ecosystem flux) or only by flux of organic material and nutrients (dead ecosystem flux). The three patches of each metaecosystem were either homogeneous or heterogeneous in nutrient loading. We found that the three groups of organisms responded differently to our treatments: flux of living organisms increased bacterial diversity irrespective of nutrient heterogeneity, while flux effects on phytoplankton diversity depended on nutrient heterogeneity, potentially indicating source-sink effects. Although zooplankton diversity was largely unaffected by our manipulations, subtle changes of community composition in response to ecosystem flux had strong effects on lower trophic levels, highlighting the importance of indirect flux effects via alterations in trophic interactions. Furthermore, differential effects of communities on the mean and spatial variability of local abiotic environments influenced the development of metaecosystem heterogeneity through time. Despite identical nutrient loading at the scale of the metaecosystem, abiotic conditions diverged between homogeneous and heterogeneous metaecosystems. For example, concentrations in dissolved organic carbon (DOC) were higher in homogeneous than heterogeneous metaecosystems, possibly because of differential responses of the algal community to local environmental conditions. Similarly, we found that flux effects on organisms translated into effects on DOC concentrations at the patch level, suggesting that flux-mediated changes in abundances of species can alter abiotic conditions. Our study shows that the dynamics of biotic and abiotic compartments of spatially structured ecosystems are intricately linked, highlighting the importance of integrating metacommunity and metaecosystem perspectives.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Animales , Bacterias , Fitoplancton , Zooplancton
7.
Proc Biol Sci ; 281(1793)2014 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-25186000

RESUMEN

Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.


Asunto(s)
Biodiversidad , Cambio Climático , Fitoplancton/fisiología , Temperatura , Biomasa , Ecosistema , Dinámica Poblacional
8.
Oecologia ; 168(3): 785-95, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21971585

RESUMEN

The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance-diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance-diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance-diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern.


Asunto(s)
Biodiversidad , Cilióforos/fisiología , Cilióforos/crecimiento & desarrollo , Dinámica Poblacional
9.
Oecologia ; 167(3): 723-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21590330

RESUMEN

There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition-colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species' growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors.


Asunto(s)
Cilióforos/fisiología , Ecosistema , Animales , Cilióforos/clasificación , Cilióforos/crecimiento & desarrollo , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie , Factores de Tiempo
10.
PLoS One ; 7(8): e44555, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952993

RESUMEN

While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium connectivity resulted in stronger depletion of the resource.


Asunto(s)
Biota , Análisis de Varianza , Animales , Cilióforos/fisiología , Especificidad de la Especie
11.
PLoS One ; 6(12): e29071, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194992

RESUMEN

Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation.


Asunto(s)
Migración Animal/fisiología , Biota , Conducta Predatoria/fisiología , Análisis de Varianza , Animales , Bacterias/crecimiento & desarrollo , Biomasa , Cilióforos/fisiología , Copépodos/fisiología , Especificidad de la Especie , Análisis de Supervivencia
12.
Appl Environ Microbiol ; 73(15): 4966-74, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17557861

RESUMEN

Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow. Flow clearly shaped the development of biofilm architecture and community composition, as revealed by microscopic investigation, denaturing gradient gel electrophoresis (DGGE) analysis, and sequencing. While biofilm growth patterns were undirected under laminar flow, they were clearly directed into ridges and conspicuous streamers under turbulent flow. A total of 51 biofilm DGGE bands were detected; the average number ranged from 13 to 16. Successional trajectories diverged from an initial community that was common in all flow treatments and increasingly converged as biofilms matured. We suggest that this developmental pattern was primarily driven by algae, which, as "ecosystem engineers," modulate their microenvironment to create similar architectures and flow conditions in all treatments and thereby reduce the physical effect of flow on biofilms. Our results thus suggest a shift from a predominantly physical control to coupled biophysical controls on bacterial community succession in stream biofilms.


Asunto(s)
Bacterias/clasificación , Biopelículas/clasificación , Ecosistema , Eucariontes/clasificación , Ríos/microbiología , Movimientos del Agua , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/análisis , Electroforesis en Gel de Poliacrilamida/métodos , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Ríos/química , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA