Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 108(42): 17378-83, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987808

RESUMEN

An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host-pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated.


Asunto(s)
Proteínas Bacterianas/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Inmunidad Celular , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/patogenicidad , Administración Oral , Animales , Animales Modificados Genéticamente , Bacteriemia/inmunología , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Genes de Insecto , Genes Virales , Hemolinfa/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mutación , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/genética , Percepción de Quorum/inmunología , Transactivadores/genética , Transactivadores/inmunología , Virulencia/inmunología
2.
Acta Vet Scand ; 64(1): 36, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503518

RESUMEN

BACKGROUND: High-grade lymphoma in dogs is a chemotherapy-responsive neoplasia with remission rates exceeding 80% under combination chemotherapy protocols. Usually these protocols are intensive and 24 + weeks. The objective of the present study was to investigate if a shorter protocol combined with an oral lomustine maintenance treatment (3 × in 8 weeks) would present an acceptable result, both for B- and T-cell lymphomas, and for the different types of lymphomas normally encountered in private veterinary practice. RESULTS: 144 dogs entered the study. Lymphoma types included multicentric (n = 123), alimentary (n = 13), miscellaneous (n = 7), and mediastinal lymphoma (n = 1). Overall response rate was 83.3% (B-cell: 86.6%, T-cell: 79.4%). Complete remission (CR) was achieved in 72.2% (B-cell: 77.3%, T-cell: 67.6%) and partial remission (PR) in 11.1% (B-cell: 9.3%, T-cell: 11.8%) of the dogs. Median duration of first CR amounted to 242 days (B-cell: 263 d, T-cell: 161 d). Median survival in dogs with CR was 374 days (B-cell: 436 d, T-cell: 252 d), and median overall survival time was 291 days (B-cell: 357d, T-cell: 210d). Immunophenotype demonstrated an independent significant influence on duration of remission and survival in the whole group. Findings of splenic and hepatic cytology were not significant associated with patient outcome. Treatment was well tolerated; the majority of adverse events were classified as grade 1 or 2. CONCLUSIONS: Short-term chemotherapy followed by lomustine consolidation leads to compara-ble remission and survival times compared to conventional protocols with cyclophosphamide, doxorubicin, vincristine and prednisolone with acceptable toxicosis in dogs with both B-cell and T-cell lymphoma.


Asunto(s)
Enfermedades de los Perros , Linfoma de Células T , Linfoma , Perros , Animales , Lomustina/uso terapéutico , Enfermedades de los Perros/patología , Linfoma de Células T/tratamiento farmacológico , Linfoma de Células T/etiología , Linfoma de Células T/veterinaria , Linfoma/tratamiento farmacológico , Linfoma/patología , Linfoma/veterinaria , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
Dev Cell ; 30(3): 249-50, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25117678

RESUMEN

Reporting in this issue of Developmental Cell, Spéder and Brand (2014) show that gap junctions are required in blood-brain barrier glial cells to reactivate proliferation of quiescent neuroblasts. Gap junctions allow synchronous Ca(2+) waves and control insulin-like protein Dipl6 expression and secretion to trigger neuroblast division.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Transducción de Señal/fisiología , Animales
4.
Methods Mol Biol ; 1149: 723-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24818946

RESUMEN

Drosophila melanogaster flies represent an interesting model to study host-pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host-pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).


Asunto(s)
Bioensayo/métodos , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Drosophila melanogaster/crecimiento & desarrollo , Hemolinfa/microbiología , Mamíferos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virulencia
5.
Front Neurosci ; 8: 365, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25452710

RESUMEN

The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

6.
Curr Drug Targets ; 12(7): 978-99, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21366519

RESUMEN

To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens might not develop resistance easily. Model organisms are a useful tool for this endeavor, thanks to the power of their genetics. Drosophila melanogaster is widely used to study host-pathogen interactions. Its basal immune response is well understood and is briefly reviewed here. Considerations relevant to choosing an adequate infection model are discussed. This review then focuses mainly on infections with two categories of pathogens, the well-studied Gram-negative bacterium Pseudomonas aeruginosa and infections by fungi of medical interest. These examples provide an overview over the current knowledge on Drosophila-pathogen interactions and illustrate the approaches that can be used to study those interactions. We also discuss the usefulness and limits of Drosophila infection models for studying specific host-pathogen interactions and high-throughput drug screening.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Animales , Antiinfecciosos/farmacología , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Farmacorresistencia Microbiana , Hongos/patogenicidad , Hongos/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología
7.
Science ; 325(5938): 340-3, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19520911

RESUMEN

Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Therefore, we revealed multiple genes involved in antibacterial defense and the regulation of innate immunity.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Genoma de los Insectos , Inmunidad Innata/genética , Interferencia de ARN , Infecciones por Serratia/inmunología , Serratia marcescens/inmunología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Células Epiteliales/citología , Células Epiteliales/fisiología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Homeostasis , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Quinasas Janus/genética , Quinasas Janus/metabolismo , Modelos Animales , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Infecciones por Serratia/genética , Infecciones por Serratia/microbiología , Serratia marcescens/fisiología , Transducción de Señal , Células Madre/citología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA